DOI

Sentiment analysis on social media and e-markets has become an emerging trend. Extracting aspect terms for structure-free text is the primary task incorporated in the aspect-based sentiment analysis. This significance relies on the dependency of other tasks on the results it provides, which directly influences the accuracy of the final results of the sentiment analysis. In this work, we propose an aspect term extraction model to identify the prominent aspects. The model is based on clustering the word vectors generated using the pre-trained word embedding model. Dimensionality reduction was employed to improve the quality of word clusters obtained using the K-Means++ clustering algorithm. The proposed model was tested on the real datasets collected from online retailers’ websites and the SemEval-14 dataset. Results show that our model outperforms the baseline models.

Язык оригиналаанглийский
Номер статьи2042
ЖурналElectronics (Switzerland)
Том11
Номер выпуска13
DOI
СостояниеОпубликовано - 29 июн 2022
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Системотехника
  • Обработка сигналов
  • Аппаратное обеспечение и архитектура ЭВМ
  • Компьютерные сети и коммуникации
  • Электротехника и электроника

ID: 96823696