Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Sentiment analysis on social media and e-markets has become an emerging trend. Extracting aspect terms for structure-free text is the primary task incorporated in the aspect-based sentiment analysis. This significance relies on the dependency of other tasks on the results it provides, which directly influences the accuracy of the final results of the sentiment analysis. In this work, we propose an aspect term extraction model to identify the prominent aspects. The model is based on clustering the word vectors generated using the pre-trained word embedding model. Dimensionality reduction was employed to improve the quality of word clusters obtained using the K-Means++ clustering algorithm. The proposed model was tested on the real datasets collected from online retailers’ websites and the SemEval-14 dataset. Results show that our model outperforms the baseline models.
Язык оригинала | английский |
---|---|
Номер статьи | 2042 |
Журнал | Electronics (Switzerland) |
Том | 11 |
Номер выпуска | 13 |
DOI | |
Состояние | Опубликовано - 29 июн 2022 |
Опубликовано для внешнего пользования | Да |
ID: 96823696