DOI

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson'01] and highly unbalanced, dense graphs as in [Raz'04] and [Razborov'03,'04]. We obtain our results by revisiting Razborov's pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

Язык оригиналаанглийский
Название основной публикации35th Computational Complexity Conference, CCC 2020
РедакторыShubhangi Saraf
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (электронное издание)9783959771566
DOI
СостояниеОпубликовано - 1 июл 2020
Событие35th Computational Complexity Conference, CCC 2020 - Virtual, Online, Германия
Продолжительность: 28 июл 202031 июл 2020

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том169
ISSN (печатное издание)1868-8969

конференция

конференция35th Computational Complexity Conference, CCC 2020
Страна/TерриторияГермания
ГородVirtual, Online
Период28/07/2031/07/20

    Предметные области Scopus

  • Программный продукт

ID: 75310335