Standard

Existence and uniqueness of spaces of splines of maximal pseudosmoothness. / Dem’yanovich, Y. K.; Kovtunenko, E. S.; Safonova, T. A.

в: Journal of Mathematical Sciences, Том 224, № 5, 08.2017, стр. 647-660.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Dem’yanovich, YK, Kovtunenko, ES & Safonova, TA 2017, 'Existence and uniqueness of spaces of splines of maximal pseudosmoothness', Journal of Mathematical Sciences, Том. 224, № 5, стр. 647-660. https://doi.org/10.1007/s10958-017-3441-1

APA

Vancouver

Author

Dem’yanovich, Y. K. ; Kovtunenko, E. S. ; Safonova, T. A. / Existence and uniqueness of spaces of splines of maximal pseudosmoothness. в: Journal of Mathematical Sciences. 2017 ; Том 224, № 5. стр. 647-660.

BibTeX

@article{42820710aa8048a680e329e4f8756f7f,
title = "Existence and uniqueness of spaces of splines of maximal pseudosmoothness",
abstract = "We consider gradation of pseudosmoothness of (in general, nonpolynomial) splines and find conditions under which the space of splines of maximal pseudosmoothness is unique on a given grid, possesses the embedding property on embedded grids, and satisfies the approximation relations. The proposed general scheme can be applied to splines generated by functions in spaces of integrable functions and in Sobolev spaces. The results are illustrated by some examples.",
author = "Dem{\textquoteright}yanovich, {Y. K.} and Kovtunenko, {E. S.} and Safonova, {T. A.}",
note = "Publisher Copyright: {\textcopyright} 2017 Springer Science+Business Media New York.",
year = "2017",
month = aug,
doi = "10.1007/s10958-017-3441-1",
language = "English",
volume = "224",
pages = "647--660",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Existence and uniqueness of spaces of splines of maximal pseudosmoothness

AU - Dem’yanovich, Y. K.

AU - Kovtunenko, E. S.

AU - Safonova, T. A.

N1 - Publisher Copyright: © 2017 Springer Science+Business Media New York.

PY - 2017/8

Y1 - 2017/8

N2 - We consider gradation of pseudosmoothness of (in general, nonpolynomial) splines and find conditions under which the space of splines of maximal pseudosmoothness is unique on a given grid, possesses the embedding property on embedded grids, and satisfies the approximation relations. The proposed general scheme can be applied to splines generated by functions in spaces of integrable functions and in Sobolev spaces. The results are illustrated by some examples.

AB - We consider gradation of pseudosmoothness of (in general, nonpolynomial) splines and find conditions under which the space of splines of maximal pseudosmoothness is unique on a given grid, possesses the embedding property on embedded grids, and satisfies the approximation relations. The proposed general scheme can be applied to splines generated by functions in spaces of integrable functions and in Sobolev spaces. The results are illustrated by some examples.

UR - http://www.scopus.com/inward/record.url?scp=85054202940&partnerID=8YFLogxK

U2 - 10.1007/s10958-017-3441-1

DO - 10.1007/s10958-017-3441-1

M3 - Article

AN - SCOPUS:85054202940

VL - 224

SP - 647

EP - 660

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 9319930