Standard

Excess of locally D-optimal designs for Cobb–Douglas model. / Шпилев, Петр Валерьевич; Мелас, Вячеслав Борисович; Григорьев, Юрий Дмитриевич.

в: Statistical Papers, Том 59, № 4, 01.12.2018, стр. 1425-1439.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Шпилев, ПВ, Мелас, ВБ & Григорьев, ЮД 2018, 'Excess of locally D-optimal designs for Cobb–Douglas model', Statistical Papers, Том. 59, № 4, стр. 1425-1439. https://doi.org/10.1007/s00362-018-1022-0

APA

Vancouver

Author

Шпилев, Петр Валерьевич ; Мелас, Вячеслав Борисович ; Григорьев, Юрий Дмитриевич. / Excess of locally D-optimal designs for Cobb–Douglas model. в: Statistical Papers. 2018 ; Том 59, № 4. стр. 1425-1439.

BibTeX

@article{53bd3c595d194b5f898fd250da35a2b0,
title = "Excess of locally D-optimal designs for Cobb–Douglas model",
abstract = "In this paper we study the problem of homothety{\textquoteright}s influence on the number of optimal design support points under fixed values of a regression model{\textquoteright}s parameters. The Cobb–Douglas two-dimensional nonlinear in parameters model used in microeconomics is considered. There exist two types of optimal designs: saturated (i.e. design with the number support points equal to the number of parameters) and excess design (i.e. design with greater number of support points). The optimal designs with the minimal number of support points are constructed explicitly. Numerical methods for constructing designs with greater number of points are used.",
keywords = "Cobb–Douglas model, Excess design, Homothetic transformation, Locally D-optimal designs, NONLINEAR MODELS, Cobb-Douglas model, POINTS",
author = "Шпилев, {Петр Валерьевич} and Мелас, {Вячеслав Борисович} and Григорьев, {Юрий Дмитриевич}",
year = "2018",
month = dec,
day = "1",
doi = "https://doi.org/10.1007/s00362-018-1022-0",
language = "English",
volume = "59",
pages = "1425--1439",
journal = "Statistical Papers",
issn = "0932-5026",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Excess of locally D-optimal designs for Cobb–Douglas model

AU - Шпилев, Петр Валерьевич

AU - Мелас, Вячеслав Борисович

AU - Григорьев, Юрий Дмитриевич

PY - 2018/12/1

Y1 - 2018/12/1

N2 - In this paper we study the problem of homothety’s influence on the number of optimal design support points under fixed values of a regression model’s parameters. The Cobb–Douglas two-dimensional nonlinear in parameters model used in microeconomics is considered. There exist two types of optimal designs: saturated (i.e. design with the number support points equal to the number of parameters) and excess design (i.e. design with greater number of support points). The optimal designs with the minimal number of support points are constructed explicitly. Numerical methods for constructing designs with greater number of points are used.

AB - In this paper we study the problem of homothety’s influence on the number of optimal design support points under fixed values of a regression model’s parameters. The Cobb–Douglas two-dimensional nonlinear in parameters model used in microeconomics is considered. There exist two types of optimal designs: saturated (i.e. design with the number support points equal to the number of parameters) and excess design (i.e. design with greater number of support points). The optimal designs with the minimal number of support points are constructed explicitly. Numerical methods for constructing designs with greater number of points are used.

KW - Cobb–Douglas model

KW - Excess design

KW - Homothetic transformation

KW - Locally D-optimal designs

KW - NONLINEAR MODELS

KW - Cobb-Douglas model

KW - POINTS

UR - http://www.scopus.com/inward/record.url?scp=85051711217&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/excess-d-optimal-designs-cobbdouglas-model

U2 - https://doi.org/10.1007/s00362-018-1022-0

DO - https://doi.org/10.1007/s00362-018-1022-0

M3 - Article

VL - 59

SP - 1425

EP - 1439

JO - Statistical Papers

JF - Statistical Papers

SN - 0932-5026

IS - 4

ER -

ID: 35200258