A differential inclusion with given set-valued mapping and initial point is considered. For this differential inclusion, it is required to find a solution that minimizes an integral functional. We use the techniques of support functions and exact penalty functions to obtain some classical results of the maximum principle for differential inclusions in the case where the support function of the set-valued mapping is continuously differentiable in the phase variables. We also consider the case where the support function of the set-valued mapping is not differentiable in the phase variables.

Язык оригиналане определен
Страницы (с-по)153-163
Число страниц11
ЖурналТРУДЫ ИНСТИТУТА МАТЕМАТИКИ И МЕХАНИКИ УРО РАН
Том21
Номер выпуска3
СостояниеОпубликовано - 2015

ID: 43410092