Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Evaluating distributional semantic models with Russian noun-adjective compositions. / Panicheva, Polina; Protopopova, Ekaterina; Bukia, Grigoriy; Mitrofanova, Olga.
Analysis of Images, Social Networks and Texts - 5th International Conference, AIST 2016, Revised Selected Papers. ред. / Natalia Loukachevitch; Alexander Panchenko; Konstantin Vorontsov; Valeri G. Labunets; Andrey V. Savchenko; Dmitry I. Ignatov; Sergey I. Nikolenko; Mikhail Yu. Khachay. Springer Nature, 2017. стр. 236-247 (Communications in Computer and Information Science; Том 661).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Evaluating distributional semantic models with Russian noun-adjective compositions
AU - Panicheva, Polina
AU - Protopopova, Ekaterina
AU - Bukia, Grigoriy
AU - Mitrofanova, Olga
PY - 2017/1/1
Y1 - 2017/1/1
N2 - In the paper vector-space semantic models based on Word2Vec word embeddings algorithm and a count-based association-oriented algorithm are evaluated and compared by measuring association strength between Russian nouns and adjectives. A dataset of nouns and associated adjectives is used as the test set for pseudodisambiguation task. Models are trained with corpora of Russian fiction. A measure of lexical association anomaly is applied evaluating similarity between the initial noun and the resulting attributive phrase. Results of association strength are reported for models characterized by different parameter values; the best parameter value combinations are proposed. The test exemplars producing the error rate are manually annotated, and the model errors are categorized in terms of their linguistic nature and compositionality features.
AB - In the paper vector-space semantic models based on Word2Vec word embeddings algorithm and a count-based association-oriented algorithm are evaluated and compared by measuring association strength between Russian nouns and adjectives. A dataset of nouns and associated adjectives is used as the test set for pseudodisambiguation task. Models are trained with corpora of Russian fiction. A measure of lexical association anomaly is applied evaluating similarity between the initial noun and the resulting attributive phrase. Results of association strength are reported for models characterized by different parameter values; the best parameter value combinations are proposed. The test exemplars producing the error rate are manually annotated, and the model errors are categorized in terms of their linguistic nature and compositionality features.
KW - Association measures
KW - Distributional semantics
KW - Selectional restrictions
KW - Vector-space representation evaluation
KW - Vector-space semantic models
UR - http://www.scopus.com/inward/record.url?scp=85014236498&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-52920-2_22
DO - 10.1007/978-3-319-52920-2_22
M3 - Conference contribution
AN - SCOPUS:85014236498
SN - 9783319529196
T3 - Communications in Computer and Information Science
SP - 236
EP - 247
BT - Analysis of Images, Social Networks and Texts - 5th International Conference, AIST 2016, Revised Selected Papers
A2 - Loukachevitch, Natalia
A2 - Panchenko, Alexander
A2 - Vorontsov, Konstantin
A2 - Labunets, Valeri G.
A2 - Savchenko, Andrey V.
A2 - Ignatov, Dmitry I.
A2 - Nikolenko, Sergey I.
A2 - Khachay, Mikhail Yu.
PB - Springer Nature
T2 - 5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016
Y2 - 7 April 2016 through 9 April 2016
ER -
ID: 47480880