DOI

The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.
Язык оригиналаанглийский
Страницы (с-по)619 - 635
Число страниц17
ЖурналASTIN Bulletin
Том53
Номер выпуска3
Дата раннего онлайн-доступа2 мая 2023
DOI
СостояниеОпубликовано - 2 сен 2023

    Области исследований

  • Capital allocations, conditional mean risk sharing, Quantile regression, order statistics, concomitants

    Предметные области Scopus

  • Математика (все)

ID: 105354142