DOI

It is well known that the number of isolated singular points of a hypersurface of degree d in ℂPm does not exceed the Arnol'd number Am(d), which is defined in combinatorial terms. In the paper it is proved that if bm-1 ± (d) are the inertia indices of the intersection form of a nonsingular hypersurface of degree d in ℂPm, then the inequality Am(d) < mm{b m-1 +(d),bm-1 -(d)} holds if and only if (m - 5)(d - 2) ≥ 18 and (m,d) ≠ (7, 12). The table of the Arnol'd numbers for 21 ≤ m ≤ 14, 3 ≤ d ≤ 17 and for 3 ≤ m ≤ 14, d = 18, 19 is given.

Язык оригиналаанглийский
Страницы (с-по)3448-3455
Число страниц8
ЖурналJournal of Mathematical Sciences
Том91
Номер выпуска6
DOI
СостояниеОпубликовано - 1 янв 1998

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 36967515