Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Estimates for Taylor series method to linear total systems of PDEs. / Babadzanjanz, Levon K.; Pototskaya, Irina Yu; Pupysheva, Yulia Yu.
в: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Том 16, № 2, 06.2020, стр. 112-120.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Estimates for Taylor series method to linear total systems of PDEs
AU - Babadzanjanz, Levon K.
AU - Pototskaya, Irina Yu
AU - Pupysheva, Yulia Yu
N1 - Publisher Copyright: ©c Санкт-Петербургский государственный университет Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6
Y1 - 2020/6
N2 - A large number of differential equations can be reduced to polynomial form. As was shown in a number of works by various authors, one of the best methods for the numerical solution of the initial value problem for such ODE systems is the method of Taylor series. In this article we consider the Cauchy problem for the total linear PDE system, and then — a theorem about the accuracy of its solutions by this method is formulated and proved. In the final part of the article, four examples of total systems of partial differential equations to the well-known two-body problem are proposed: two of them are related to the Kepler equation, one to the motion of a point in the orbit plane, and the last to the motion of the orbit plane.
AB - A large number of differential equations can be reduced to polynomial form. As was shown in a number of works by various authors, one of the best methods for the numerical solution of the initial value problem for such ODE systems is the method of Taylor series. In this article we consider the Cauchy problem for the total linear PDE system, and then — a theorem about the accuracy of its solutions by this method is formulated and proved. In the final part of the article, four examples of total systems of partial differential equations to the well-known two-body problem are proposed: two of them are related to the Kepler equation, one to the motion of a point in the orbit plane, and the last to the motion of the orbit plane.
KW - Numerical PDE system integration
KW - Polynomial system
KW - Taylor series method
KW - Total linear PDE system
UR - http://www.scopus.com/inward/record.url?scp=85091251220&partnerID=8YFLogxK
U2 - 10.21638/11701/SPBU10.2020.203
DO - 10.21638/11701/SPBU10.2020.203
M3 - Article
AN - SCOPUS:85091251220
VL - 16
SP - 112
EP - 120
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 2
ER -
ID: 72622684