Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Errors of approximation with polynomial splines of the fifth order. / Burova, I. G. ; Doronina, A. G. .
Applied Physics, System Science and Computers II: Proceedings of the 2nd International Conference on Applied Physics, System Science and Computers (APSAC2017), September 27-29, 2017, Dubrovnik, Croatia. ред. / Klimis Ntalianis; Anca Croitoru. Springer Nature, 2019. стр. 39-46 (LNEE; Том 489).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Errors of approximation with polynomial splines of the fifth order
AU - Burova, I. G.
AU - Doronina, A. G.
N1 - Burova I.G., Doronina A.G. (2019) Errors of Approximation with Polynomial Splines of the Fifth Order. In: Ntalianis K., Croitoru A. (eds) Applied Physics, System Science and Computers II. APSAC 2017. Lecture Notes in Electrical Engineering, vol 489. Springer, Cham. https://doi.org/10.1007/978-3-319-75605-9_6
PY - 2019/1/1
Y1 - 2019/1/1
N2 - This paper is a continuation of a series of papers devoted to the construction and investigation of the properties of integro-differential polynomial splines of the fifth order. It is supposed that values of function in grid nodes and values of integrals over intervals are known. Solving the system of linear algebraic equations, we find basic splines. An approximation of the function in this paper is constructed on every grid interval separately using values of the function in two adjacent grid nodes and the values of three integrals over intervals, and basic splines. We call this approximation an integro-differential spline and we call these basic splines integro-differential basic splines. The properties of interpolation with integro-differential polynomial basic splines are investigated. A comparison of the properties of integro-differential approximations for a different choice of integrals is presented. A comparison of the integro-differential approximation with approximation using polynomial splines of the Lagrangian type is made. Numerical examples are presented.
AB - This paper is a continuation of a series of papers devoted to the construction and investigation of the properties of integro-differential polynomial splines of the fifth order. It is supposed that values of function in grid nodes and values of integrals over intervals are known. Solving the system of linear algebraic equations, we find basic splines. An approximation of the function in this paper is constructed on every grid interval separately using values of the function in two adjacent grid nodes and the values of three integrals over intervals, and basic splines. We call this approximation an integro-differential spline and we call these basic splines integro-differential basic splines. The properties of interpolation with integro-differential polynomial basic splines are investigated. A comparison of the properties of integro-differential approximations for a different choice of integrals is presented. A comparison of the integro-differential approximation with approximation using polynomial splines of the Lagrangian type is made. Numerical examples are presented.
KW - Approximation
KW - Integro-differential splines
UR - http://www.scopus.com/inward/record.url?scp=85049316320&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-75605-9_6
DO - 10.1007/978-3-319-75605-9_6
M3 - Conference contribution
SN - 978-3-319-75604-2
T3 - LNEE
SP - 39
EP - 46
BT - Applied Physics, System Science and Computers II
A2 - Ntalianis, Klimis
A2 - Croitoru, Anca
PB - Springer Nature
T2 - 2nd International Conference on Applied Physics, System Science and Computers
Y2 - 27 September 2017 through 29 September 2017
ER -
ID: 61325742