Standard

Equilibrium stressability of multidimensional frameworks. / Karpenkov, Oleg; Müller, Christian; Panina, Gaiane; Servatius, Brigitte; Servatius, Herman; Siersma, Dirk.

в: European Journal of Mathematics, Том 8, № 1, 01.03.2022, стр. 33-61.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Karpenkov, O, Müller, C, Panina, G, Servatius, B, Servatius, H & Siersma, D 2022, 'Equilibrium stressability of multidimensional frameworks', European Journal of Mathematics, Том. 8, № 1, стр. 33-61. https://doi.org/10.1007/s40879-021-00523-3

APA

Karpenkov, O., Müller, C., Panina, G., Servatius, B., Servatius, H., & Siersma, D. (2022). Equilibrium stressability of multidimensional frameworks. European Journal of Mathematics, 8(1), 33-61. https://doi.org/10.1007/s40879-021-00523-3

Vancouver

Karpenkov O, Müller C, Panina G, Servatius B, Servatius H, Siersma D. Equilibrium stressability of multidimensional frameworks. European Journal of Mathematics. 2022 Март 1;8(1):33-61. https://doi.org/10.1007/s40879-021-00523-3

Author

Karpenkov, Oleg ; Müller, Christian ; Panina, Gaiane ; Servatius, Brigitte ; Servatius, Herman ; Siersma, Dirk. / Equilibrium stressability of multidimensional frameworks. в: European Journal of Mathematics. 2022 ; Том 8, № 1. стр. 33-61.

BibTeX

@article{cecac84308334595a33114282bfec240,
title = "Equilibrium stressability of multidimensional frameworks",
abstract = "We prove an equilibrium stressability criterion for trivalent multidimensional frameworks. The criterion appears in different languages: (1) in terms of stress monodromies, (2) in terms of surgeries, (3) in terms of exact discrete 1-forms, and (4) in Cayley algebra terms.",
keywords = "Cayley algebra, Discrete multiplicative 1-form, Equilibrium stress, Framework, Lifting, Maxwell–Cremona correspondence, Self-stress, Tensegrity",
author = "Oleg Karpenkov and Christian M{\"u}ller and Gaiane Panina and Brigitte Servatius and Herman Servatius and Dirk Siersma",
year = "2022",
month = mar,
day = "1",
doi = "10.1007/s40879-021-00523-3",
language = "English",
volume = "8",
pages = "33--61",
journal = "European Journal of Mathematics",
issn = "2199-675X",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Equilibrium stressability of multidimensional frameworks

AU - Karpenkov, Oleg

AU - Müller, Christian

AU - Panina, Gaiane

AU - Servatius, Brigitte

AU - Servatius, Herman

AU - Siersma, Dirk

PY - 2022/3/1

Y1 - 2022/3/1

N2 - We prove an equilibrium stressability criterion for trivalent multidimensional frameworks. The criterion appears in different languages: (1) in terms of stress monodromies, (2) in terms of surgeries, (3) in terms of exact discrete 1-forms, and (4) in Cayley algebra terms.

AB - We prove an equilibrium stressability criterion for trivalent multidimensional frameworks. The criterion appears in different languages: (1) in terms of stress monodromies, (2) in terms of surgeries, (3) in terms of exact discrete 1-forms, and (4) in Cayley algebra terms.

KW - Cayley algebra

KW - Discrete multiplicative 1-form

KW - Equilibrium stress

KW - Framework

KW - Lifting

KW - Maxwell–Cremona correspondence

KW - Self-stress

KW - Tensegrity

UR - http://www.scopus.com/inward/record.url?scp=85123951425&partnerID=8YFLogxK

U2 - 10.1007/s40879-021-00523-3

DO - 10.1007/s40879-021-00523-3

M3 - Article

AN - SCOPUS:85123951425

VL - 8

SP - 33

EP - 61

JO - European Journal of Mathematics

JF - European Journal of Mathematics

SN - 2199-675X

IS - 1

ER -

ID: 126323325