Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Entropy function and orthogonal polynomials. / Bessonov, R. V.
в: Journal of Approximation Theory, Том 272, 105650, 12.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Entropy function and orthogonal polynomials
AU - Bessonov, R. V.
N1 - Publisher Copyright: © 2021 Elsevier Inc.
PY - 2021/12
Y1 - 2021/12
N2 - We give a simple proof of a classical theorem by A. Máté, P. Nevai, and V. Totik on asymptotic behavior of orthogonal polynomials on the unit circle. It is based on a new real-variable approach involving an entropy estimate for the orthogonality measure. Our second result is an extension of a theorem by G. Freud on averaged convergence of Fourier series. We also discuss some related open problems in the theory of orthogonal polynomials on the unit circle.
AB - We give a simple proof of a classical theorem by A. Máté, P. Nevai, and V. Totik on asymptotic behavior of orthogonal polynomials on the unit circle. It is based on a new real-variable approach involving an entropy estimate for the orthogonality measure. Our second result is an extension of a theorem by G. Freud on averaged convergence of Fourier series. We also discuss some related open problems in the theory of orthogonal polynomials on the unit circle.
KW - Christoffel–Darboux kernels
KW - CMV basis
KW - Freud theorem
KW - Máté–Nevai–Totik theorem
KW - Scattering
KW - Szegő class
KW - Universality limits
UR - http://www.scopus.com/inward/record.url?scp=85115291511&partnerID=8YFLogxK
U2 - 10.1016/j.jat.2021.105650
DO - 10.1016/j.jat.2021.105650
M3 - Article
AN - SCOPUS:85115291511
VL - 272
JO - Journal of Approximation Theory
JF - Journal of Approximation Theory
SN - 0021-9045
M1 - 105650
ER -
ID: 94392980