Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let Td : L2([0, 1]d) → C([0. 1]d) be the d-dimensional integration operator. We show that its Kolmogorov and entropy numbers decrease with order at least k-1 (log k)d.-1/2. From this we derive that the small ball probabilities of the Brownian sheet on [0, 1]d under the C([0, 1]d)-norm can be estimated from below by exp(-Cε-2|log ε|2d-1), which improves the best known lower bounds considerably. We also get similar results with respect to certain Orlicz norms.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 347-352 |
Число страниц | 6 |
Журнал | Comptes Rendus de l'Academie des Sciences - Series I: Mathematics |
Том | 326 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 янв 1998 |
ID: 43811346