Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
End-to-end speech recognition systems incorporating deep neural networks (DNNs) have achieved good results. We propose applying CTC (Connectionist Temporal Classification) models and attention-based encoder-decoder in automatic recognition of the Russian continuous speech. We used different neural network models such Long short-term memory (LSTM), bidirectional LSTM and Residual Networks to provide experiments. We got recognition accuracy a bit worse than hybrid models but our models can work without large language model and they showed better performance in terms of average decoding speed that can be helpful in real systems. Experiments are performed with extra-large vocabulary (more than 150K words) of Russian speech.
Язык оригинала | английский |
---|---|
Название основной публикации | Speech and Computer - 20th International Conference, SPECOM 2018, Proceedings |
Редакторы | Rodmonga Potapova, Oliver Jokisch, Alexey Karpov |
Издатель | Springer Nature |
Страницы | 377-386 |
Число страниц | 10 |
ISBN (печатное издание) | 9783319995786 |
DOI | |
Состояние | Опубликовано - 1 сен 2018 |
Событие | 20th International Conference on Speech and Computer - Leipzig, Германия Продолжительность: 18 сен 2018 → 22 сен 2018 |
Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Том | 11096 LNAI |
ISSN (печатное издание) | 0302-9743 |
ISSN (электронное издание) | 1611-3349 |
конференция | 20th International Conference on Speech and Computer |
---|---|
Сокращенное название | SPECOM 2018 |
Страна/Tерритория | Германия |
Город | Leipzig |
Период | 18/09/18 → 22/09/18 |
ID: 36521378