Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
In this research we present the hybrid model of finding the most critical distribution trajectories of multipath Social engineering attacks, passing through which by the malefactor on a global basis has the topmost degree of probability and will bring the greatest loss to the company. The solution of search problem concerning the most critical trajectories rests upon the assumption that the estimated probabilities of the direct Social engineering attack on user, degree evaluation of documents’ criticality, the estimated probabilities of Social engineering attack’s distribution from user to user are premised on linguistic indistinct variables are already calculated. The described model finds its application at creation when constructing the estimates of information systems users’ safety against Social engineering attacks and promotes well-timed informing of decision-makers on the vulnerabilities which being available in system.
Язык оригинала | английский |
---|---|
Название основной публикации | PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19) |
Редакторы | S Kovalev, Tarassov, Snasel, A Sukhanov |
Издатель | Springer Nature |
Страницы | 198-205 |
Число страниц | 8 |
ISBN (печатное издание) | 9783030500962 |
DOI | |
Состояние | Опубликовано - 1 янв 2020 |
Событие | 4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019 - Ostrava-Prague, Чехия Продолжительность: 2 дек 2019 → 7 дек 2019 |
Название | Advances in Intelligent Systems and Computing |
---|---|
Издатель | SPRINGER INTERNATIONAL PUBLISHING AG |
Том | 1156 |
ISSN (печатное издание) | 2194-5357 |
конференция | 4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019 |
---|---|
Страна/Tерритория | Чехия |
Город | Ostrava-Prague |
Период | 2/12/19 → 7/12/19 |
ID: 62789221