We study isometric embeddings of some solutions of the Einstein equations with suffciently high symmetries into a flat ambient space. We briefly describe a method for constructing surfaces with a given symmetry. We discuss all minimum embeddings of the Schwarzschild metric obtained using this method and show how the method can be used to construct all minimal embeddings for the Friedmann models. We classify all the embeddings in terms of realizations of symmetries of the corresponding solutions.
Язык оригиналаанглийский
Страницы (с-по)806-815
ЖурналTheoretical and Mathematical Physics
Том175
Номер выпуска3
DOI
СостояниеОпубликовано - 2013

ID: 7385062