Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation. / Cardone, G.; Durante, T.; Nazarov, S. A.
в: Journal des Mathematiques Pures et Appliquees, Том 112, 01.04.2018, стр. 1-40.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation
AU - Cardone, G.
AU - Durante, T.
AU - Nazarov, S. A.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Π l ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter l k ε =πk+O(ε) with any k=1,2,3,. such that the waveguide Π l k ε ε supports a trapped mode with an eigenvalue λ k ε =π 2 −4π 4 l 2 ε 2 +O(ε 3 ) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π 2 ], and it is absent in the case l≠l k ε . The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Π l ε , namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.
AB - We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Π l ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter l k ε =πk+O(ε) with any k=1,2,3,. such that the waveguide Π l k ε ε supports a trapped mode with an eigenvalue λ k ε =π 2 −4π 4 l 2 ε 2 +O(ε 3 ) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π 2 ], and it is absent in the case l≠l k ε . The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Π l ε , namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.
KW - Acoustic waveguide
KW - Asymptotics
KW - Box-shaped perturbation
KW - Continuous spectrum
KW - Embedded eigenvalues
KW - Neumann problem
UR - http://www.scopus.com/inward/record.url?scp=85041631138&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2018.01.002
DO - 10.1016/j.matpur.2018.01.002
M3 - Article
AN - SCOPUS:85041631138
VL - 112
SP - 1
EP - 40
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
SN - 0021-7824
ER -
ID: 40974021