Standard

Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation. / Cardone, G.; Durante, T.; Nazarov, S. A.

в: Journal des Mathematiques Pures et Appliquees, Том 112, 01.04.2018, стр. 1-40.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Cardone, G, Durante, T & Nazarov, SA 2018, 'Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation', Journal des Mathematiques Pures et Appliquees, Том. 112, стр. 1-40. https://doi.org/10.1016/j.matpur.2018.01.002

APA

Vancouver

Cardone G, Durante T, Nazarov SA. Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation. Journal des Mathematiques Pures et Appliquees. 2018 Апр. 1;112:1-40. https://doi.org/10.1016/j.matpur.2018.01.002

Author

Cardone, G. ; Durante, T. ; Nazarov, S. A. / Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation. в: Journal des Mathematiques Pures et Appliquees. 2018 ; Том 112. стр. 1-40.

BibTeX

@article{dc0c8a9ddb8b46738f1772476da65d53,
title = "Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation",
abstract = " We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Π l ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter l k ε =πk+O(ε) with any k=1,2,3,. such that the waveguide Π l k ε ε supports a trapped mode with an eigenvalue λ k ε =π 2 −4π 4 l 2 ε 2 +O(ε 3 ) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π 2 ], and it is absent in the case l≠l k ε . The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Π l ε , namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries. ",
keywords = "Acoustic waveguide, Asymptotics, Box-shaped perturbation, Continuous spectrum, Embedded eigenvalues, Neumann problem",
author = "G. Cardone and T. Durante and Nazarov, {S. A.}",
year = "2018",
month = apr,
day = "1",
doi = "10.1016/j.matpur.2018.01.002",
language = "English",
volume = "112",
pages = "1--40",
journal = "Journal des Mathematiques Pures et Appliquees",
issn = "0021-7824",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation

AU - Cardone, G.

AU - Durante, T.

AU - Nazarov, S. A.

PY - 2018/4/1

Y1 - 2018/4/1

N2 - We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Π l ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter l k ε =πk+O(ε) with any k=1,2,3,. such that the waveguide Π l k ε ε supports a trapped mode with an eigenvalue λ k ε =π 2 −4π 4 l 2 ε 2 +O(ε 3 ) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π 2 ], and it is absent in the case l≠l k ε . The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Π l ε , namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.

AB - We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Π l ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter l k ε =πk+O(ε) with any k=1,2,3,. such that the waveguide Π l k ε ε supports a trapped mode with an eigenvalue λ k ε =π 2 −4π 4 l 2 ε 2 +O(ε 3 ) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π 2 ], and it is absent in the case l≠l k ε . The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Π l ε , namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.

KW - Acoustic waveguide

KW - Asymptotics

KW - Box-shaped perturbation

KW - Continuous spectrum

KW - Embedded eigenvalues

KW - Neumann problem

UR - http://www.scopus.com/inward/record.url?scp=85041631138&partnerID=8YFLogxK

U2 - 10.1016/j.matpur.2018.01.002

DO - 10.1016/j.matpur.2018.01.002

M3 - Article

AN - SCOPUS:85041631138

VL - 112

SP - 1

EP - 40

JO - Journal des Mathematiques Pures et Appliquees

JF - Journal des Mathematiques Pures et Appliquees

SN - 0021-7824

ER -

ID: 40974021