DOI

An affine α-resolvable PBD of index λ is a triple (V, B, R), where V is a set (of points), B is a collection of subsets of V (blocks), and R is a partition of B (resolution), satisfying the following conditions: (i) any two points occur together in λ blocks, (ii) any point occurs in α blocks of each resolution class, and (iii) |B| = |V| + |R| − 1. Those designs embeddable in symmetric designs are described and two infinite series of embeddable designs are constructed. The analog of the Bruck–Ryser–Chowla theorem for affine α-resolvable PBDs is obtained.

Язык оригиналаанглийский
Страницы (с-по)111-129
Число страниц19
ЖурналJournal of Combinatorial Designs
Том6
Номер выпуска2
DOI
СостояниеОпубликовано - 1 янв 1998

    Предметные области Scopus

  • Дискретная математика и комбинаторика

ID: 37147576