Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An affine α-resolvable PBD of index λ is a triple (V, B, R), where V is a set (of points), B is a collection of subsets of V (blocks), and R is a partition of B (resolution), satisfying the following conditions: (i) any two points occur together in λ blocks, (ii) any point occurs in α blocks of each resolution class, and (iii) |B| = |V| + |R| − 1. Those designs embeddable in symmetric designs are described and two infinite series of embeddable designs are constructed. The analog of the Bruck–Ryser–Chowla theorem for affine α-resolvable PBDs is obtained.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 111-129 |
| Число страниц | 19 |
| Журнал | Journal of Combinatorial Designs |
| Том | 6 |
| Номер выпуска | 2 |
| DOI | |
| Состояние | Опубликовано - 1 янв 1998 |
ID: 37147576