Standard

Elliptic perturbations of dynamical systems with a proper node. / Kalyakin, L. A.; Sultanov, O. A.; Tarkhanov, N.

Contemporary Mathematics. Том 699 2017. стр. 155-166.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаяРецензирование

Harvard

Kalyakin, LA, Sultanov, OA & Tarkhanov, N 2017, Elliptic perturbations of dynamical systems with a proper node. в Contemporary Mathematics. Том. 699, стр. 155-166. https://doi.org/10.1090/conm/699/14088

APA

Kalyakin, L. A., Sultanov, O. A., & Tarkhanov, N. (2017). Elliptic perturbations of dynamical systems with a proper node. в Contemporary Mathematics (Том 699, стр. 155-166) https://doi.org/10.1090/conm/699/14088

Vancouver

Kalyakin LA, Sultanov OA, Tarkhanov N. Elliptic perturbations of dynamical systems with a proper node. в Contemporary Mathematics. Том 699. 2017. стр. 155-166 https://doi.org/10.1090/conm/699/14088

Author

Kalyakin, L. A. ; Sultanov, O. A. ; Tarkhanov, N. / Elliptic perturbations of dynamical systems with a proper node. Contemporary Mathematics. Том 699 2017. стр. 155-166

BibTeX

@inbook{8c95d9c5e73b45e19ce3e2bef1c1d22e,
title = "Elliptic perturbations of dynamical systems with a proper node",
abstract = "The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.",
keywords = "Asymptotic methods, Dynamical system, Singular perturbation",
author = "Kalyakin, {L. A.} and Sultanov, {O. A.} and N. Tarkhanov",
year = "2017",
month = jan,
day = "1",
doi = "10.1090/conm/699/14088",
language = "English",
volume = "699",
pages = "155--166",
booktitle = "Contemporary Mathematics",

}

RIS

TY - CHAP

T1 - Elliptic perturbations of dynamical systems with a proper node

AU - Kalyakin, L. A.

AU - Sultanov, O. A.

AU - Tarkhanov, N.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.

AB - The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.

KW - Asymptotic methods

KW - Dynamical system

KW - Singular perturbation

UR - http://www.scopus.com/inward/record.url?scp=85041918028&partnerID=8YFLogxK

U2 - 10.1090/conm/699/14088

DO - 10.1090/conm/699/14088

M3 - Chapter

AN - SCOPUS:85041918028

VL - 699

SP - 155

EP - 166

BT - Contemporary Mathematics

ER -

ID: 126273216