The adsorption and electrokinetic characteristics of different titanium dioxide samples (produced by the Merck Co. and synthesized by the sol-gel method) are studied depending on the pH, background electrolyte concentration, and the nature of counterions (halide ions and Na+, K+, Ba2+, and La3+ metal ions). It is revealed that, in the presence of an indifferent electrolyte, the points of zero charge (PZC) for the synthesized TiO2 sample and the Merck sample correspond to pH = 6.0 ± 0.1 and 5.0, respectively. It is found that the nature of halide ions has almost no influence on the magnitude of the TiO2 surface charge σ0 (in the region of its positive values) and the position of PZC. An increase in the specificity of cations with a rise in the charge causes PZC shift to the acidic region and enhances the absolute values of σ0 at both negative and positive surface charges. It is established that the positions of PZC and isoelectric point in 10-2 M solutions of the examined 1: 1 electrolytes nearly coincide with