Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Electronic structure of (Mn1-xPbx)Bi2Te4: Experimental evidence of topological phase transition. / Естюнин, Дмитрий Алексеевич; Макарова, Татьяна Павловна; Klimovskikh, Ilya I.; Бокай, Кирилл Андреевич; Голяшов, Владимир Андреевич; Кох, Константин Александрович; Терещенко, Олег Евгеньевич; Ideta, S.; Miyai, Y.; Kumar, Y.; Iwata, T.; Kosa, T.; Okuda, T; Miyamoto, K; Kuroda, K.; Shimada, K.; Шикин, Александр Михайлович.
в: Physical Review Research, Том 7, 023168, 19.05.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Electronic structure of (Mn1-xPbx)Bi2Te4: Experimental evidence of topological phase transition
AU - Естюнин, Дмитрий Алексеевич
AU - Макарова, Татьяна Павловна
AU - Klimovskikh, Ilya I.
AU - Бокай, Кирилл Андреевич
AU - Голяшов, Владимир Андреевич
AU - Кох, Константин Александрович
AU - Терещенко, Олег Евгеньевич
AU - Ideta, S.
AU - Miyai, Y.
AU - Kumar, Y.
AU - Iwata, T.
AU - Kosa, T.
AU - Okuda, T
AU - Miyamoto, K
AU - Kuroda, K.
AU - Shimada, K.
AU - Шикин, Александр Михайлович
PY - 2025/5/19
Y1 - 2025/5/19
N2 - This study investigates methods for controlling the physical properties of the intrinsic magnetic topological insulator MnBi$_2$Te$_4$ (MBT) by substituting Mn with Pb in Mn$_{1-x}$Pb$_x$Bi$_2$Te$_4$ (MPBT) solid solutions. This substitution enables tunable magnetic and electronic properties. Using various angle-resolved photoemission spectroscopy (ARPES) techniques, including spin-resolved and circular dichroism (CD) measurements, we analyzed the evolution of the electronic structure across different Pb concentrations, with a focus on topological phase transitions (TPT) near x = 50 %. Key indicators of TPT include the presence or absence of topological surface states (TSS) and bulk band gap closure. The results show a gradual decrease of the bulk band gap in the electronic structure of MPBT up to x = 40 %, where it nearly vanishes, followed by a constant gap value between 40 - 60 %, and its reopening above 80 %, which is accompanied by a transition of the electronic structure of MPBT to a PbBi$_2$Te$_4$-like electronic structure. TSS were observed at x less than 30 % and greater than 80 %, as confirmed by CD and spin-resolved ARPES data, but were absent near x = 55 %, suggesting a distinct topological phase - possibly semi-metallic or a trivial insulator with a narrow gap phase. These findings demonstrate the tunability of the electronic structure of MPBT, making it a promising candidate for topological and spintronic applications.
AB - This study investigates methods for controlling the physical properties of the intrinsic magnetic topological insulator MnBi$_2$Te$_4$ (MBT) by substituting Mn with Pb in Mn$_{1-x}$Pb$_x$Bi$_2$Te$_4$ (MPBT) solid solutions. This substitution enables tunable magnetic and electronic properties. Using various angle-resolved photoemission spectroscopy (ARPES) techniques, including spin-resolved and circular dichroism (CD) measurements, we analyzed the evolution of the electronic structure across different Pb concentrations, with a focus on topological phase transitions (TPT) near x = 50 %. Key indicators of TPT include the presence or absence of topological surface states (TSS) and bulk band gap closure. The results show a gradual decrease of the bulk band gap in the electronic structure of MPBT up to x = 40 %, where it nearly vanishes, followed by a constant gap value between 40 - 60 %, and its reopening above 80 %, which is accompanied by a transition of the electronic structure of MPBT to a PbBi$_2$Te$_4$-like electronic structure. TSS were observed at x less than 30 % and greater than 80 %, as confirmed by CD and spin-resolved ARPES data, but were absent near x = 55 %, suggesting a distinct topological phase - possibly semi-metallic or a trivial insulator with a narrow gap phase. These findings demonstrate the tunability of the electronic structure of MPBT, making it a promising candidate for topological and spintronic applications.
UR - http://arxiv.org/abs/2411.10390
UR - https://www.mendeley.com/catalogue/eba66a8f-8dc0-3eaa-8b55-51b9464863bf/
U2 - 10.1103/PhysRevResearch.7.023168
DO - 10.1103/PhysRevResearch.7.023168
M3 - Article
VL - 7
JO - Physical Review Research
JF - Physical Review Research
SN - 2643-1564
M1 - 023168
ER -
ID: 135872014