Standard

Electron belt-to-σ-hole switch of noncovalently bound iodine(I) atoms in dithiocarbamate metal complexes. / Зеленков, Лев Евгеньевич; Елисеева, Анастасия Александровна; Байков, Сергей Валентинович; Суслонов, Виталий Валерьевич; Galmés, Bartomeu; Frontera, Antonio; Кукушкин, Вадим Юрьевич; Иванов, Даниил Михайлович; Бокач, Надежда Арсеньевна.

в: Inorganic Chemistry Frontiers, Том 8, № 10, 21.05.2021, стр. 2505-2517.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{0a362fd3a3134b9b95aaa3ecb936fdd1,
title = "Electron belt-to-σ-hole switch of noncovalently bound iodine(I) atoms in dithiocarbamate metal complexes",
abstract = "Co-crystallization of dithiocarbamate complexes [MII(S2CNEt2)2] (M = Cu 1, Ni 2, Pd 3, Pt 4) and 1,3,5-triiodotrifluorobenzene (FIB) gives an isomorphic series of (1-4)·2FIB co-crystals exhibiting quadruple Cu/Ni/Pd/Pt isostructural exchange. In the structures of (1-4)·2FIB, the halogen-bonded C-I?M (Ni, Pd, Pt) and semicoordination M?I-C (Cu) metal-involving contacts were identified by X-ray diffractometry and their nature was verified theoretically. The directionality of the Is-hole?d2zMII and MII?Ielectron belt interactions depends on the identity of a metal center: on going from a rather electrophilic CuII to substantially more nucleophilic NiII, PdII, and PtII centers, we observed the electron belt-to-s-hole switch of a noncovalently bound iodine(i) of FIB and, correspondingly, its shift from semicoordination to halogen bonding. The negative values of the electrostatic potentials (given in parentheses) were estimated for all metal centers and they decrease in the order CuII (-8.8) > NiII (-24.5) > PdII (-28.6) > PtII (-33.3 kcal mol-1). Despite the negative potentials at all MIIs, the semicoordinative contact Cu?I was established by the recognition of the LP(I) ? LP*(Cu) charge transfer using natural bond orbital (NBO) analysis and the comparison of electron density (ED) and electrostatic potential (ESP) minima positions along the I?Cu bond paths. In the case of the rather nucleophilic (although positively charged) PdII and PtII centers, the contacts C-I?d2z[Pd] and C-I?d2z[Pt] can be attributed to the unconventional metal-involving halogen bonding; these contacts are among the strongest (4.30 and 5.42 kcal mol-1, correspondingly) between any metal center and iodine(i)-based s-hole donors.",
keywords = "CRYSTAL",
author = "Зеленков, {Лев Евгеньевич} and Елисеева, {Анастасия Александровна} and Байков, {Сергей Валентинович} and Суслонов, {Виталий Валерьевич} and Bartomeu Galm{\'e}s and Antonio Frontera and Кукушкин, {Вадим Юрьевич} and Иванов, {Даниил Михайлович} and Бокач, {Надежда Арсеньевна}",
note = "Publisher Copyright: {\textcopyright} the Partner Organisations.",
year = "2021",
month = may,
day = "21",
doi = "10.1039/D1QI00314C",
language = "English",
volume = "8",
pages = "2505--2517",
journal = "Inorganic Chemistry Frontiers",
issn = "2052-1545",
publisher = "Royal Society of Chemistry",
number = "10",

}

RIS

TY - JOUR

T1 - Electron belt-to-σ-hole switch of noncovalently bound iodine(I) atoms in dithiocarbamate metal complexes

AU - Зеленков, Лев Евгеньевич

AU - Елисеева, Анастасия Александровна

AU - Байков, Сергей Валентинович

AU - Суслонов, Виталий Валерьевич

AU - Galmés, Bartomeu

AU - Frontera, Antonio

AU - Кукушкин, Вадим Юрьевич

AU - Иванов, Даниил Михайлович

AU - Бокач, Надежда Арсеньевна

N1 - Publisher Copyright: © the Partner Organisations.

PY - 2021/5/21

Y1 - 2021/5/21

N2 - Co-crystallization of dithiocarbamate complexes [MII(S2CNEt2)2] (M = Cu 1, Ni 2, Pd 3, Pt 4) and 1,3,5-triiodotrifluorobenzene (FIB) gives an isomorphic series of (1-4)·2FIB co-crystals exhibiting quadruple Cu/Ni/Pd/Pt isostructural exchange. In the structures of (1-4)·2FIB, the halogen-bonded C-I?M (Ni, Pd, Pt) and semicoordination M?I-C (Cu) metal-involving contacts were identified by X-ray diffractometry and their nature was verified theoretically. The directionality of the Is-hole?d2zMII and MII?Ielectron belt interactions depends on the identity of a metal center: on going from a rather electrophilic CuII to substantially more nucleophilic NiII, PdII, and PtII centers, we observed the electron belt-to-s-hole switch of a noncovalently bound iodine(i) of FIB and, correspondingly, its shift from semicoordination to halogen bonding. The negative values of the electrostatic potentials (given in parentheses) were estimated for all metal centers and they decrease in the order CuII (-8.8) > NiII (-24.5) > PdII (-28.6) > PtII (-33.3 kcal mol-1). Despite the negative potentials at all MIIs, the semicoordinative contact Cu?I was established by the recognition of the LP(I) ? LP*(Cu) charge transfer using natural bond orbital (NBO) analysis and the comparison of electron density (ED) and electrostatic potential (ESP) minima positions along the I?Cu bond paths. In the case of the rather nucleophilic (although positively charged) PdII and PtII centers, the contacts C-I?d2z[Pd] and C-I?d2z[Pt] can be attributed to the unconventional metal-involving halogen bonding; these contacts are among the strongest (4.30 and 5.42 kcal mol-1, correspondingly) between any metal center and iodine(i)-based s-hole donors.

AB - Co-crystallization of dithiocarbamate complexes [MII(S2CNEt2)2] (M = Cu 1, Ni 2, Pd 3, Pt 4) and 1,3,5-triiodotrifluorobenzene (FIB) gives an isomorphic series of (1-4)·2FIB co-crystals exhibiting quadruple Cu/Ni/Pd/Pt isostructural exchange. In the structures of (1-4)·2FIB, the halogen-bonded C-I?M (Ni, Pd, Pt) and semicoordination M?I-C (Cu) metal-involving contacts were identified by X-ray diffractometry and their nature was verified theoretically. The directionality of the Is-hole?d2zMII and MII?Ielectron belt interactions depends on the identity of a metal center: on going from a rather electrophilic CuII to substantially more nucleophilic NiII, PdII, and PtII centers, we observed the electron belt-to-s-hole switch of a noncovalently bound iodine(i) of FIB and, correspondingly, its shift from semicoordination to halogen bonding. The negative values of the electrostatic potentials (given in parentheses) were estimated for all metal centers and they decrease in the order CuII (-8.8) > NiII (-24.5) > PdII (-28.6) > PtII (-33.3 kcal mol-1). Despite the negative potentials at all MIIs, the semicoordinative contact Cu?I was established by the recognition of the LP(I) ? LP*(Cu) charge transfer using natural bond orbital (NBO) analysis and the comparison of electron density (ED) and electrostatic potential (ESP) minima positions along the I?Cu bond paths. In the case of the rather nucleophilic (although positively charged) PdII and PtII centers, the contacts C-I?d2z[Pd] and C-I?d2z[Pt] can be attributed to the unconventional metal-involving halogen bonding; these contacts are among the strongest (4.30 and 5.42 kcal mol-1, correspondingly) between any metal center and iodine(i)-based s-hole donors.

KW - CRYSTAL

UR - http://www.scopus.com/inward/record.url?scp=85106170485&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/e92cbc38-2884-3942-b9b8-3cc61c95325a/

U2 - 10.1039/D1QI00314C

DO - 10.1039/D1QI00314C

M3 - Article

VL - 8

SP - 2505

EP - 2517

JO - Inorganic Chemistry Frontiers

JF - Inorganic Chemistry Frontiers

SN - 2052-1545

IS - 10

ER -

ID: 76937309