Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods. / Aliev, T.A.; Lavrentev, F.V.; Dyakonov, A.V.; Diveev, D.A.; Shilovskikh, V.V.; Skorb, E.V.
в: Biosensors and Bioelectronics, Том 259, 01.09.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods
AU - Aliev, T.A.
AU - Lavrentev, F.V.
AU - Dyakonov, A.V.
AU - Diveev, D.A.
AU - Shilovskikh, V.V.
AU - Skorb, E.V.
N1 - Export Date: 19 October 2024 CODEN: BBIOE Адрес для корреспонденции: Skorb, E.V.; Infochemistry Scientific Center, 9 Lomonosova Street, Russian Federation; эл. почта: skorb@itmo.ru Химические вещества/CAS: cetirizine, 83881-51-0, 83881-52-1, 163837-48-7; gallium, 7440-55-3, 14391-02-7; indium, 7440-74-6; Gallium Фирменные наименования: version 3.11 Производители: Megaclassic company Сведения о финансировании: Russian Science Foundation, RSF, 24-13-00355 Сведения о финансировании: Russian Science Foundation, RSF Текст о финансировании 1: This research was funded by RSF grant no. 24-13-00355. Priority 2030 Program is acknowledged for infrastructural support.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. © 2024
AB - We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. © 2024
KW - Bacteria
KW - eGaIn
KW - Electrochemical platform
KW - Hydrogels
KW - Machine learning
KW - Escherichia coli
KW - Gallium alloys
KW - Indium alloys
KW - Bacteria detection
KW - Egain
KW - Electrochemical data
KW - Electrochemical platforms
KW - Escherichia coli bacteria
KW - Fast detections
KW - Hydrogel system
KW - Machine learning methods
KW - Machine-learning
KW - Reduce time
KW - alloy
KW - cetirizine
KW - gallium
KW - hydrogel
KW - indium
KW - accuracy
KW - agriculture
KW - Article
KW - bacterium
KW - biomedicine
KW - cell culture
KW - colony forming unit
KW - cyclic voltammetry
KW - electrochemical analysis
KW - electron transport
KW - energy dispersive X ray spectroscopy
KW - food analysis
KW - hydrogen bond
KW - impedance spectroscopy
KW - machine learning
KW - nonhuman
KW - nutrition
KW - perceptron
KW - pluripotent stem cell
KW - Raman spectrometry
KW - receiver operating characteristic
KW - scanning electron microscopy
KW - sensitivity analysis
KW - three dimensional printing
KW - voltammetry
KW - X ray
KW - X ray emission spectroscopy
KW - X ray spectroscopy
KW - chemistry
KW - devices
KW - equipment design
KW - genetic procedures
KW - human
KW - isolation and purification
KW - procedures
KW - Biosensing Techniques
KW - Electrochemical Techniques
KW - Equipment Design
KW - Gallium
KW - Humans
KW - Machine Learning
UR - https://www.mendeley.com/catalogue/a67403f1-5607-362d-a5d2-9a99add1d65a/
U2 - 10.1016/j.bios.2024.116377
DO - 10.1016/j.bios.2024.116377
M3 - статья
VL - 259
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
SN - 0956-5663
ER -
ID: 126391132