Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry. / Miyanishi, Y.; Rozenblum, G.
в: АЛГЕБРА И АНАЛИЗ, Том 31, № 2, 2019, стр. 248-268.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry.
AU - Miyanishi, Y.
AU - Rozenblum, G.
N1 - Y. Miyanishi, G. Rozenblum, “Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry”, Алгебра и анализ, 31:2 (2019), 248–268
PY - 2019
Y1 - 2019
N2 - We consider the asymptotic properties of the eigenvalues of the Neumann- Poincare (NP) operator in three dimensions. The region Ω C R3 is bounded by a compact surface Γ = ƏΩ, with certain smoothness conditions imposed. The NP operat or K г, called often ‘the direct value of the double layer potential’, acting in L2(Γ), is defined by Kг[ϕ]:=1/4π ∫((y-x,n (y)))/(|x-y|3)ϕ(y)dSy where dSy is the surface element and n(y) is the outer unit normal on Γ. The first-named author proved in [27] that the singular numbers sj (Kг) of Kr and the ordered moduli of its eigenvalues λj (Kr) satisfy the Weyl law Si (K(Г))~|λj (К(Г))~{(3W (Г)-2πX(Г))/128π}1/2j-1/2 under the condition that Γ belongs to the class C2,a with α > 0, where W(Γ) and χ(Γ) denote, respectively, the Willmore energy and the Euler characteristic of the boundary surface Γ. Although the NP operator is not selfadjoint (and therefore no general relationships between eigenvalues and singular number exists), the ordered moduli of the eigenvalues of Kr satisfy the same asymptotic relation. Our main purpose here is to investigate the asymptotic behavior of positive and negative eigenvalues separately under the condition of infinite smoothness of the boundary Γ. These formulas are used, in particular, to obtain certain answers to the long-standing problem of the existence or finiteness of negative eigenvalues of Kr. A more sophisticated estimation allows us to give a natural extension of the Weyl law for the case of a smooth boundary.
AB - We consider the asymptotic properties of the eigenvalues of the Neumann- Poincare (NP) operator in three dimensions. The region Ω C R3 is bounded by a compact surface Γ = ƏΩ, with certain smoothness conditions imposed. The NP operat or K г, called often ‘the direct value of the double layer potential’, acting in L2(Γ), is defined by Kг[ϕ]:=1/4π ∫((y-x,n (y)))/(|x-y|3)ϕ(y)dSy where dSy is the surface element and n(y) is the outer unit normal on Γ. The first-named author proved in [27] that the singular numbers sj (Kг) of Kr and the ordered moduli of its eigenvalues λj (Kr) satisfy the Weyl law Si (K(Г))~|λj (К(Г))~{(3W (Г)-2πX(Г))/128π}1/2j-1/2 under the condition that Γ belongs to the class C2,a with α > 0, where W(Γ) and χ(Γ) denote, respectively, the Willmore energy and the Euler characteristic of the boundary surface Γ. Although the NP operator is not selfadjoint (and therefore no general relationships between eigenvalues and singular number exists), the ordered moduli of the eigenvalues of Kr satisfy the same asymptotic relation. Our main purpose here is to investigate the asymptotic behavior of positive and negative eigenvalues separately under the condition of infinite smoothness of the boundary Γ. These formulas are used, in particular, to obtain certain answers to the long-standing problem of the existence or finiteness of negative eigenvalues of Kr. A more sophisticated estimation allows us to give a natural extension of the Weyl law for the case of a smooth boundary.
KW - Potential theory
KW - spectral theory
KW - Spectral Geometry
KW - Neumann–Poincaré operator
KW - eigenvalues
KW - Weyl's law
KW - pseudodifferential operators
KW - Willmore energy
UR - http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1648&option_lang=rus
UR - https://elibrary.ru/item.asp?id=37078099
M3 - Article
VL - 31
SP - 248
EP - 268
JO - АЛГЕБРА И АНАЛИЗ
JF - АЛГЕБРА И АНАЛИЗ
SN - 0234-0852
IS - 2
ER -
ID: 50638393