Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a T-junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter T and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 473-494 |
| Журнал | Sbornik Mathematics |
| Том | 210 |
| Номер выпуска | 4 |
| DOI | |
| Состояние | Опубликовано - 2019 |
ID: 46296094