Standard

Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case. / Rozenblum, G. V.; Shargorodsky, E. M.

в: Functional Analysis and its Applications, Том 55, № 2, 01.04.2021, стр. 170-173.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Rozenblum, GV & Shargorodsky, EM 2021, 'Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case', Functional Analysis and its Applications, Том. 55, № 2, стр. 170-173. https://doi.org/10.1134/S001626632102009X

APA

Vancouver

Author

Rozenblum, G. V. ; Shargorodsky, E. M. / Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case. в: Functional Analysis and its Applications. 2021 ; Том 55, № 2. стр. 170-173.

BibTeX

@article{310ed985d2af43b7ae670dcd67da2ee4,
title = "Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case",
abstract = "Abstract: We find that, in the critical case (Formula presented.), the eigenvalues of the problem (Formula presented.) with the singular measure P supported on a compact Lipschitz surface of an arbitrary dimension in (Formula presented.) satisfy an asymptotic formula of the same order as in the case of an absolutely continuous measure.",
keywords = "eigenvalues, singular measures, собственные значения, Полигармонический оператор",
author = "Rozenblum, {G. V.} and Shargorodsky, {E. M.}",
note = "Rozenblum, G.V., Shargorodsky, E.M. Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case. Funct Anal Its Appl 55, 170–173 (2021). https://doi.org/10.1134/S001626632102009X",
year = "2021",
month = apr,
day = "1",
doi = "10.1134/S001626632102009X",
language = "English",
volume = "55",
pages = "170--173",
journal = "Functional Analysis and its Applications",
issn = "0016-2663",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case

AU - Rozenblum, G. V.

AU - Shargorodsky, E. M.

N1 - Rozenblum, G.V., Shargorodsky, E.M. Eigenvalue Asymptotics for Weighted Polyharmonic Operator with a Singular Measure in the Critical Case. Funct Anal Its Appl 55, 170–173 (2021). https://doi.org/10.1134/S001626632102009X

PY - 2021/4/1

Y1 - 2021/4/1

N2 - Abstract: We find that, in the critical case (Formula presented.), the eigenvalues of the problem (Formula presented.) with the singular measure P supported on a compact Lipschitz surface of an arbitrary dimension in (Formula presented.) satisfy an asymptotic formula of the same order as in the case of an absolutely continuous measure.

AB - Abstract: We find that, in the critical case (Formula presented.), the eigenvalues of the problem (Formula presented.) with the singular measure P supported on a compact Lipschitz surface of an arbitrary dimension in (Formula presented.) satisfy an asymptotic formula of the same order as in the case of an absolutely continuous measure.

KW - eigenvalues

KW - singular measures

KW - собственные значения

KW - Полигармонический оператор

UR - http://www.scopus.com/inward/record.url?scp=85118710537&partnerID=8YFLogxK

U2 - 10.1134/S001626632102009X

DO - 10.1134/S001626632102009X

M3 - Article

AN - SCOPUS:85118710537

VL - 55

SP - 170

EP - 173

JO - Functional Analysis and its Applications

JF - Functional Analysis and its Applications

SN - 0016-2663

IS - 2

ER -

ID: 105206401