Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Eigenvalue asymptotics for potential type operators on lipschitz surfaces of codimension greater than 1. / Rozenblum, Grigori; Tashchiyan, Grigory.
в: Opuscula Mathematica, Том 38, № 5, 01.01.2018, стр. 733-758.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Eigenvalue asymptotics for potential type operators on lipschitz surfaces of codimension greater than 1
AU - Rozenblum, Grigori
AU - Tashchiyan, Grigory
PY - 2018/1/1
Y1 - 2018/1/1
N2 - For potential type integral operators on a Lipschitz submanifold the asymptotic formula for eigenvalues is proved. The reasoning is based upon the study of the rate of operator convergence as smooth surfaces approximate the Lipschitz one.
AB - For potential type integral operators on a Lipschitz submanifold the asymptotic formula for eigenvalues is proved. The reasoning is based upon the study of the rate of operator convergence as smooth surfaces approximate the Lipschitz one.
KW - Eigenvalue asymptotics
KW - Integral operators
KW - Potential theory
UR - http://www.scopus.com/inward/record.url?scp=85048856336&partnerID=8YFLogxK
U2 - 10.7494/OpMath.2018.38.5.733
DO - 10.7494/OpMath.2018.38.5.733
M3 - Article
AN - SCOPUS:85048856336
VL - 38
SP - 733
EP - 758
JO - Opuscula Mathematica
JF - Opuscula Mathematica
SN - 1232-9274
IS - 5
ER -
ID: 50650104