DOI

This article deals with the principles of automatic label assignment for e-hypertext markup. We’ve identified 40 topics that are characteristic of hypertext media, after that, we used an ensemble of two graph-based methods using outer sources for candidate labels generation: candidate labels extraction from Yandex search engine (Labels-Yandex); candidate labels extraction from Wikipedia by operations on word vector representations in Explicit Semantic Analysis (ESA). The results of the algorithms are label’s triplets for each topic, after which we carried out a two-step evaluation procedure of the algorithms’ results: at the first stage, two experts assessed the triplet’s relevance to the topic on a 3-value scale (non-conformity to the topic/partial compliance to the topic/full compliance to the topic), second, we carried out evaluation of single labels by 10 assessors who were asked to mark each label by weights «0» – a label doesn’t match a topic; «1» – a label matches a topic. Our experiments show that in most cases Labels-Yandex algorithm predicts correct labels but frequently relates the topic to a label that is relevant to the current moment, but not to a set of keywords, while Labels-ESA works out labels with generalized content. Thus, a combination of these methods will make it possible to markup e-hypertext topics and create a semantic network theory of e-hypertext.

Язык оригиналаанглийский
Название основной публикацииRecent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings
РедакторыWil M. van der Aalst, Vladimir Batagelj, Alexey Buzmakov, Dmitry I. Ignatov, Anna Kalenkova, Michael Khachay, Olessia Koltsova, Andrey Kutuzov, Sergei O. Kuznetsov, Irina A. Lomazova, Natalia Loukachevitch, Ilya Makarov, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko, Elena Tutubalina
ИздательSpringer Nature
Страницы102-114
Число страниц13
ISBN (печатное издание)9783030712136
DOI
СостояниеОпубликовано - 2021
Событие9th International Conference on Analysis of Images, Social Networks, and Texts, AIST 2020 - Virtual, Online
Продолжительность: 15 окт 202016 окт 2020

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том1357 CCIS
ISSN (печатное издание)1865-0929
ISSN (электронное издание)1865-0937

конференция

конференция9th International Conference on Analysis of Images, Social Networks, and Texts, AIST 2020
ГородVirtual, Online
Период15/10/2016/10/20

    Предметные области Scopus

  • Компьютерные науки (все)
  • Математика (все)

ID: 85926806