Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Efficient longest common subsequence computation using bulk-synchronous parallelism. / Krusche, Peter; Tiskin, Alexander.
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006). 2006. стр. 165-174 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 3984).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Efficient longest common subsequence computation using bulk-synchronous parallelism
AU - Krusche, Peter
AU - Tiskin, Alexander
PY - 2006/1/1
Y1 - 2006/1/1
N2 - This paper presents performance results for parallel algorithms that compute the longest common subsequence of two strings. This algorithm is a representative of a class of algorithms that compute string to string distances and has computational complexity O(n2). The parallel algorithm uses a variable grid size, runs in O(p) supersteps (synchronization phases) and has linear communication costs. We study this algorithm in BSP context, give runtime estimations and compare the predictions to experimental values measured on three different parallel architectures, using different BSP programming libraries and an efficient implementation for sequential computation. We find that using the BSP model and the appropriate optimized BSP library improves the performance over plain MPI, and that scalability can be improved by using a tuned grid size parameter. © Springer-Verlag Berlin Heidelberg 2006.
AB - This paper presents performance results for parallel algorithms that compute the longest common subsequence of two strings. This algorithm is a representative of a class of algorithms that compute string to string distances and has computational complexity O(n2). The parallel algorithm uses a variable grid size, runs in O(p) supersteps (synchronization phases) and has linear communication costs. We study this algorithm in BSP context, give runtime estimations and compare the predictions to experimental values measured on three different parallel architectures, using different BSP programming libraries and an efficient implementation for sequential computation. We find that using the BSP model and the appropriate optimized BSP library improves the performance over plain MPI, and that scalability can be improved by using a tuned grid size parameter. © Springer-Verlag Berlin Heidelberg 2006.
UR - http://www.scopus.com/inward/record.url?scp=33745940915&partnerID=8YFLogxK
U2 - 10.1007/11751649_18
DO - 10.1007/11751649_18
M3 - Conference contribution
AN - SCOPUS:33745940915
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 165
EP - 174
BT - Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)
ER -
ID: 127757490