Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Efficient automaton-based recognition for linear conjunctive languages. / Okhotin, Alexander.
в: International Journal of Foundations of Computer Science, Том 14, № 6, 01.12.2003, стр. 1103-1116.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Efficient automaton-based recognition for linear conjunctive languages
AU - Okhotin, Alexander
PY - 2003/12/1
Y1 - 2003/12/1
N2 - Linear conjunctive grammars have recently been proved computationally equivalent to triangular trellis automata. The relation between these grammars and these automata resembles that between regular expressions and finite automata: while the former are better suited for human use, the latter are considerably easier to implement. This paper studies efficient algorithms for converting a linear conjunctive grammar to an equivalent triangular trellis automaton, and also proposes a number of techniques of reducing the size of these automata.
AB - Linear conjunctive grammars have recently been proved computationally equivalent to triangular trellis automata. The relation between these grammars and these automata resembles that between regular expressions and finite automata: while the former are better suited for human use, the latter are considerably easier to implement. This paper studies efficient algorithms for converting a linear conjunctive grammar to an equivalent triangular trellis automaton, and also proposes a number of techniques of reducing the size of these automata.
KW - cellular automata
KW - Conjunctive grammars
KW - recognition
KW - trellis automata
UR - http://www.scopus.com/inward/record.url?scp=47849099967&partnerID=8YFLogxK
U2 - 10.1142/S0129054103002205
DO - 10.1142/S0129054103002205
M3 - Article
AN - SCOPUS:47849099967
VL - 14
SP - 1103
EP - 1116
JO - International Journal of Foundations of Computer Science
JF - International Journal of Foundations of Computer Science
SN - 0129-0541
IS - 6
ER -
ID: 41144591