DOI

The article considers approaches to multi-level data processing using the Practical Byzantine Fault Tolerance (PBFT) and Reliable, Replicated, and Fault-Tolerant (RAFT) consensus algorithms. Their application for organizing efficient processing and aggregation of transactional data in distributed systems is analyzed. The main focus is on the use of recurrent neural networks with long short-term memory (LSTM) for predicting transactions based on data processed by PBFT and RAFT. The results of experiments on improving the accuracy of predictions taking into account various consensus strategies are presented.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications -- ICCSA 2025 Workshops
РедакторыOsvaldo Gervasi, Beniamino Murgante, Chiara Garau, Yeliz Karaca, Maria Noelia Faginas Lago, Francesco Scorza, Ana Cristina Braga
Место публикацииCham
ИздательSpringer Nature
Страницы103-114
Число страниц12
ISBN (печатное издание)978-3-031-97589-9
DOI
СостояниеОпубликовано - 2025
СобытиеComputational Science and Its Applications – ICCSA 2025 Workshops - Istanbul, Турция
Продолжительность: 30 июн 20253 июл 2025

Серия публикаций

НазваниеLecture Notes in Computer Science
Том15887 LNCS

конференция

конференцияComputational Science and Its Applications – ICCSA 2025 Workshops
Страна/TерриторияТурция
ГородIstanbul
Период30/06/253/07/25

ID: 139439753