DOI

Let Gn, N∞N, denote the set of gaps of the Hill operator. We solve the following problems: 1) find the effective masses Mn±, 2) compare the effective mass Mn± with the length of the gap Gn, and with the height of the corresponding slit on the quasimomentum plane (both with fixed number n and their sums), 3) consider the problems 1), 2) for more general cases (the Dirac operator with periodic coefficients, the Schrödinger operator with a limit periodic potential). To obtain 1)-3) we use a conformal mapping corresponding to the quasimomentum of the Hill operator or the Dirac operator.

Язык оригиналаанглийский
Страницы (с-по)597-625
Число страниц29
ЖурналCommunications in Mathematical Physics
Том169
Номер выпуска3
DOI
СостояниеОпубликовано - мая 1995
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 86258333