Результаты исследований: Научные публикации в периодических изданиях › статья
Dynamics near nonhyperbolic fixed points or nontransverse homoclinic points. / Kryzhevich, S.
в: Mathematics and Computers in Simulation, 2014, стр. 163-179.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - Dynamics near nonhyperbolic fixed points or nontransverse homoclinic points
AU - Kryzhevich, S.
PY - 2014
Y1 - 2014
N2 - We study dynamics in a neighborhood of a nonhyperbolic fixed point or an irreducible homoclinic tangent point. General type conditions for the existence of infinite sets of periodic points are obtained. A new method, based on the study of the dynamics of center disks, is introduced.
AB - We study dynamics in a neighborhood of a nonhyperbolic fixed point or an irreducible homoclinic tangent point. General type conditions for the existence of infinite sets of periodic points are obtained. A new method, based on the study of the dynamics of center disks, is introduced.
KW - Partial hyperbolicity
KW - Center unstable manifold
KW - Homoclinic point
KW - Chaos
U2 - http://dx.doi.org/10.1016/j.matcom.2012.07.007
DO - http://dx.doi.org/10.1016/j.matcom.2012.07.007
M3 - Article
SP - 163
EP - 179
JO - Mathematics and Computers in Simulation
JF - Mathematics and Computers in Simulation
SN - 0378-4754
ER -
ID: 5404614