DOI

  • Zezhou Li
  • Bingfeng Wang
  • Shiteng Zhao
  • Ruslan Z. Valiev
  • Kenneth S. Vecchio
  • Marc A. Meyers

Dynamic deformation and shear localization of ultrafine-grained (∼120 nm) pure titanium are examined. The strain hardening can be considered as having two regimes: below and above a strain ∼0.04; at this point there is a drastic decrease in the slope. The strain-rate sensitivity of ultrafine-grained titanium is found to be approximately the same as its coarse grained counterpart. Based on experimentally determined parameters, the Zerilli-Armstrong equation is modified to describe the mechanical response of the ultrafine-grained titanium over the strain rate range 10−5 to 103 s−1. Adiabatic shear banding is examined in a forced shear configuration where large strain is imposed in a narrow region. The microstructure inside the adiabatic shear band consists of a mixture of elongated grains and equiaxed nanograins (∼40 nm) that are significantly smaller than the initial grains (∼120 nm). The formation of equiaxed nanograins is modeled through a mechanism of rotational dynamic recrystallization. This further reduction in grain size from the one generated by ECAP is interpreted in terms of the Zener-Hollomon parameter for quasistatic and dynamic deformation. The adiabatic shear band eventually fractures by a combination of brittle and ductile failure.

Язык оригиналаанглийский
Страницы (с-по)210-218
Число страниц9
ЖурналActa Materialia
Том125
DOI
СостояниеОпубликовано - 15 фев 2017
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Электроника, оптика и магнитные материалы
  • Керамика и композитные материалы
  • Пластик и полимеры
  • Металлы и сплавы

ID: 35163780