Standard

Dual doped electroactive hydrogelic fibrous mat with high areal capacitance. / Smirnov, Michael A.; Sokolova, Maria P.; Geydt, Pavel; Smirnov, Nikolay N.; Bobrova, Natalya V.; Toikka, Alexander M.; Lahderanta, Erkki.

в: Materials Letters, Том 199, 15.07.2017, стр. 192-195.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Smirnov, MA, Sokolova, MP, Geydt, P, Smirnov, NN, Bobrova, NV, Toikka, AM & Lahderanta, E 2017, 'Dual doped electroactive hydrogelic fibrous mat with high areal capacitance', Materials Letters, Том. 199, стр. 192-195. https://doi.org/10.1016/j.matlet.2017.04.083

APA

Vancouver

Author

Smirnov, Michael A. ; Sokolova, Maria P. ; Geydt, Pavel ; Smirnov, Nikolay N. ; Bobrova, Natalya V. ; Toikka, Alexander M. ; Lahderanta, Erkki. / Dual doped electroactive hydrogelic fibrous mat with high areal capacitance. в: Materials Letters. 2017 ; Том 199. стр. 192-195.

BibTeX

@article{1969ccd8d0284f80865317146bdb8062,
title = "Dual doped electroactive hydrogelic fibrous mat with high areal capacitance",
abstract = "The 3D mat-like electroactive hydrogel for application as electrode material for supercapacitor was fabricated by chemical oxidative polymerization of aniline in the solution containing two dopants: organic copolymer of acrylamide with 2-acrylamido-2-methyl-propanesulfonic acid and inorganic HCl. Electrochemical tests revealed that utilization of two dopants gave a high areal capacitance 8.1 F cm−2 at current density 5.1 mA cm−2. Prepared electrode material retains 47% of initial capacitance after applying of 5000 charge-discharge cycles.",
keywords = "Electrical properties, Electroconducting hydrogel, Polyaniline, Polymers, Supercapacitor",
author = "Smirnov, {Michael A.} and Sokolova, {Maria P.} and Pavel Geydt and Smirnov, {Nikolay N.} and Bobrova, {Natalya V.} and Toikka, {Alexander M.} and Erkki Lahderanta",
note = "Publisher Copyright: {\textcopyright} 2017 Elsevier B.V. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "2017",
month = jul,
day = "15",
doi = "10.1016/j.matlet.2017.04.083",
language = "English",
volume = "199",
pages = "192--195",
journal = "Materials Letters",
issn = "0167-577X",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Dual doped electroactive hydrogelic fibrous mat with high areal capacitance

AU - Smirnov, Michael A.

AU - Sokolova, Maria P.

AU - Geydt, Pavel

AU - Smirnov, Nikolay N.

AU - Bobrova, Natalya V.

AU - Toikka, Alexander M.

AU - Lahderanta, Erkki

N1 - Publisher Copyright: © 2017 Elsevier B.V. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2017/7/15

Y1 - 2017/7/15

N2 - The 3D mat-like electroactive hydrogel for application as electrode material for supercapacitor was fabricated by chemical oxidative polymerization of aniline in the solution containing two dopants: organic copolymer of acrylamide with 2-acrylamido-2-methyl-propanesulfonic acid and inorganic HCl. Electrochemical tests revealed that utilization of two dopants gave a high areal capacitance 8.1 F cm−2 at current density 5.1 mA cm−2. Prepared electrode material retains 47% of initial capacitance after applying of 5000 charge-discharge cycles.

AB - The 3D mat-like electroactive hydrogel for application as electrode material for supercapacitor was fabricated by chemical oxidative polymerization of aniline in the solution containing two dopants: organic copolymer of acrylamide with 2-acrylamido-2-methyl-propanesulfonic acid and inorganic HCl. Electrochemical tests revealed that utilization of two dopants gave a high areal capacitance 8.1 F cm−2 at current density 5.1 mA cm−2. Prepared electrode material retains 47% of initial capacitance after applying of 5000 charge-discharge cycles.

KW - Electrical properties

KW - Electroconducting hydrogel

KW - Polyaniline

KW - Polymers

KW - Supercapacitor

UR - http://www.scopus.com/inward/record.url?scp=85018511435&partnerID=8YFLogxK

U2 - 10.1016/j.matlet.2017.04.083

DO - 10.1016/j.matlet.2017.04.083

M3 - Article

AN - SCOPUS:85018511435

VL - 199

SP - 192

EP - 195

JO - Materials Letters

JF - Materials Letters

SN - 0167-577X

ER -

ID: 9316011