DOI

The paper is devoted to the online identification of the nonlinear model of surface vessel dynamics. The mathematical formulation of the maritime ships is complicated due to the existence of nonlinear hydrodynamic forces and moments that are associated with vessel dynamics. For this reason, the coefficients of the model are not known, nor do they require clarification. The identification algorithm is based on the method of the dynamic regressor extension and mixing (DREM). On the first step using parameterisation, the regression model is obtained, where regressor and regressand depend on measurable signals: linear velocities in surge, the linear velocity in sway, the angular velocity in yaw and the rudder angle. At the second step, the new regression model is obtained using linear stable filters and delays. DREM allows replacing the regression model of the nth order with n first order regression models and estimate parameters separately. Finally, parameters are estimated by the standard gradient descent method. The efficiency of the proposed approach is demonstrated through a set of numerical simulations.

Язык оригиналаанглийский
Название основной публикацииMaritime Transport, MT2019
РедакторыG. Passerini, S. Ricci
ИздательWIT Press
Страницы65-72
Число страниц8
ISBN (печатное издание)9781784663476
DOI
СостояниеОпубликовано - 2019
Событие1st International Conference on Maritime Transport, MT2019 - Rome, Италия
Продолжительность: 10 сен 201912 сен 2019

Серия публикаций

НазваниеWIT Transactions on the Built Environment
Том187
ISSN (печатное издание)1743-3509
ISSN (электронное издание)1746-4498

конференция

конференция1st International Conference on Maritime Transport, MT2019
Страна/TерриторияИталия
ГородRome
Период10/09/1912/09/19

    Предметные области Scopus

  • Архитектура
  • Городское и структурное проектирование
  • Строительство
  • Автотракторная техника
  • Безопасность, риски, качество и надежность
  • Гуманитарные науки и искусство (разное)
  • Транспортное сообщение
  • Исследования безопасности
  • Прикладные компьютерные науки

ID: 76547480