DOI

  • Man Tianxing
  • Elena Stankova
  • Alexander Vodyaho
  • Nataly Zhukova
  • Yulia Shichkina

In the data mining domain, the diversity of algorithms and the clutter of data make the knowledge discovery process very unfriendly to many non-computer professional researchers. Meta-learning helps users to modify some aspects of this process to improve the performance of the resulting model. Semantic meta mining is the process of mining metadata about data mining algorithms based on expertise extracted from the knowledge base. The knowledge base is usually represented in the form of ontology. This article proposes a domain-oriented multi-level ontology (DoMO) through merging and improving existing data mining ontologies. It provides the restrictions of the dataset characteristics to help the domain experts describe data set in the form of ontology entities. According to the entities of the data characteristics in DoMO, the users can query the ontology to obtain the optimized data processing process. In this paper, we take the time series classification problem as an example to present the effectiveness of the proposed ontology.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2020
Подзаголовок основной публикации20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part I
РедакторыOsvaldo Gervasi, et al.
ИздательSpringer Nature
Страницы634-649
Число страниц16
ISBN (печатное издание)9783030587987
DOI
СостояниеОпубликовано - 2020
Событие20th International Conference on Computational Science and Its Applications, ICCSA 2020 - Cagliari, Италия
Продолжительность: 1 июл 20204 июл 2020
http://iccsa.org/

Серия публикаций

НазваниеLecture Notes in Computer Science
Том12249
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция20th International Conference on Computational Science and Its Applications, ICCSA 2020
Сокращенное названиеICCSA 2020
Страна/TерриторияИталия
ГородCagliari
Период1/07/204/07/20
Сайт в сети Internet

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 70310902