Ссылки

DOI

Modern architectures of data acquisition and processing often consider low-cost and low-power devices that can be bound together to form a distributed infrastructure. In this paper we overview possibilities to organize a distributed computing testbed based on microcomputers similar to Raspberry Pi and Intel Edison. The goal of the research is to investigate and develop a scheduler for orchestrating distributed data processing and general purpose computations on such unreliable and resource-constrained hardware. Also we consider integration of the scheduler with well-known distributed data processing framework Apache Spark. We outline the project carried out in collaboration with Siemens LLC to compare different configurations of the hardware and software deployment and evaluate performance and applicability of the tools to the testbed.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2017
Подзаголовок основной публикации17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part V
ИздательSpringer Nature
Страницы387-398
ISBN (электронное издание)978-3-319-62404-4
ISBN (печатное издание)978-3-319-62403-7
DOI
СостояниеОпубликовано - 2017
Событие17th International Conference on Computational Science and Its Applications, ICCSA 2017 - Trieste, Италия
Продолжительность: 2 июл 20175 июл 2017
Номер конференции: 17

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSpringer Nature
Том10408
ISSN (печатное издание)0302-9743

конференция

конференция17th International Conference on Computational Science and Its Applications, ICCSA 2017
Сокращенное названиеICCSA 2017
Страна/TерриторияИталия
ГородTrieste
Период2/07/175/07/17

ID: 71305063