DOI

For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.

Язык оригиналаанглийский
Страницы (с-по)925-940
Число страниц16
ЖурналIndiana University Mathematics Journal
Том53
Номер выпуска4
DOI
СостояниеОпубликовано - 2004
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Математика (все)

ID: 5204514