Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Discrete spectrum of a periodic Schrödinger operator with variable metric perturbed by a nonnegative rapidly decaying potential. / Sloushch, V. A.
в: St. Petersburg Mathematical Journal, Том 27, № 2, 2016, стр. 317-326.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Discrete spectrum of a periodic Schrödinger operator with variable metric perturbed by a nonnegative rapidly decaying potential
AU - Sloushch, V. A.
PY - 2016
Y1 - 2016
N2 - The discrete spectrum is investigated that emerges in spectral gaps of the elliptic periodic operator $ A=-\mathrm {div} a(x)\mathrm {grad} +b(x)$, $ x\in \mathbb{R}^{d}$, perturbed by a nonnegative, ``rapidly'' decaying potential $\displaystyle 0\le V(x)\sim v(x/\vert x\vert)\vert x\vert^{-\varrho }, \quad \vert x\vert\to +\infty ,\quad \varrho \ge d. $ The asymptotics of the number of eigenvalues for the perturbed operator $ B(t)=A+tV$, $ t>0$, that have crossed a fixed point of the gap, is established with respect to the large coupling constant $ t$. - See more at: http://www.ams.org/journals/spmj/2016-27-02/S1061-0022-2016-01388-0/#Abstract
AB - The discrete spectrum is investigated that emerges in spectral gaps of the elliptic periodic operator $ A=-\mathrm {div} a(x)\mathrm {grad} +b(x)$, $ x\in \mathbb{R}^{d}$, perturbed by a nonnegative, ``rapidly'' decaying potential $\displaystyle 0\le V(x)\sim v(x/\vert x\vert)\vert x\vert^{-\varrho }, \quad \vert x\vert\to +\infty ,\quad \varrho \ge d. $ The asymptotics of the number of eigenvalues for the perturbed operator $ B(t)=A+tV$, $ t>0$, that have crossed a fixed point of the gap, is established with respect to the large coupling constant $ t$. - See more at: http://www.ams.org/journals/spmj/2016-27-02/S1061-0022-2016-01388-0/#Abstract
KW - Periodic Schr\"odinger operator
KW - discrete spectrum
KW - spectral gap
KW - asymptotics with respect to a large coupling constant
KW - Cwikel-type estimate. - See more at: http://www.ams.org/journals/spmj/2016-27-02/S1061-0022-2016-01388-0/#sthash.6w99xYJK.dpuf
U2 - http://dx.doi.org/10.1090/spmj/1388
DO - http://dx.doi.org/10.1090/spmj/1388
M3 - статья
VL - 27
SP - 317
EP - 326
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 2
ER -
ID: 7557906