DOI

Electronic methods of managing the educational process are gaining popularity. Recently, a large number of user programs have appeared for such accounting. Based on this, the issue of personal data protection requires increased attention. The coronavirus pandemic has led to a significant increase in the amount of data distributed remotely, which requires information security for a wider range of workers on a continuous basis. In this article, we will consider such a relatively new mechanism designed to help protect personal data as differential privacy. Differential privacy is a way of strictly mathematical definition of possible risks in public access to sensitive data. Based on estimating the probabilities of possible data losses, you can build the right policy to “noise” publicly available statistics. This approach will make it possible to find a compromise between the preservation of general patterns in the data and the security of the personal data of the participants in the educational process.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2022 Workshops
Страницы603-615
Число страниц13
DOI
СостояниеОпубликовано - 2022
Событие22nd International Conference on Computational Science and Its Applications - Malaga, Испания
Продолжительность: 4 июл 20227 июл 2022
Номер конференции: 22
https://iccsa.org/

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том13380
ISSN (печатное издание)0302-9743

конференция

конференция22nd International Conference on Computational Science and Its Applications
Сокращенное названиеICCSA 2022
Страна/TерриторияИспания
ГородMalaga
Период4/07/227/07/22
Сайт в сети Internet

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 98811400