Standard

Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. / Dong, Yilong; Xu, Min; Kalueff, Allan V.; Song, Cai.

в: European Journal of Nutrition, Том 57, № 5, 01.08.2018, стр. 1781-1791.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{b869fd10f5a44227a91d21968ed061dd,
title = "Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration",
abstract = "Purpose: Interleukin (IL)-1β can activate glial cells to trigger neuroinflammation and neurodegeneration. Lower omega (n)-3 polyunsaturated fatty acids (PUFAs) and lower n-3/n-6 PUFA ratios occur in the brain of patients with Alzheimer{\textquoteright}s disease (AD). We have previously reported that an n-3 PUFA, eicosapentaenoic acid (EPA), can improve memory and attenuate neurodegeneration-like changes in animal models of AD. However, whether and how EPA modulates glial cell activity and functions remains unclear. The aim of this study was to test the hypothesis that EPA may attenuate neuroinflammation by inhibiting microglial activation and microglia-produced proinflammatory cytokines, and by enhancing the expression of astrocytes-produced neurotrophins and their receptors. Methods: Male Long-Evans rats were fed either palm oil supplemented diet or EPA supplemented diet for 42 days. On day 36 of diet feeding, rats received an intracerebroventricular injection of IL-1β or saline for 7 days. The glial activation, the expression of amyloid precursor protein (APP), calcium-dependent phospholipase (cPL) A2, brain-derived neurotrophic factor (BDNF) and its receptor, and PUFA profile in the hippocampus were analyzed. Results: IL-1β elevated biomarkers of microglial CD11b and astrocyte GFAP expression, increased the expression of APP, tumor-necrosis factor (TNF)-α, but reduced BDNF and its receptor (TrKB). IL-1β also lowered n-3 EPA and docosapentaenoic acid concentrations but increased n-6 PUFAs and cPLA2 activity in the hippocampus. EPA supplement normalized the n-3 and n-6 PUFA profiles and cPLA2 levels, inhibited glial activation, reduced APP and TNF-α expression, as well as up-regulated BDNF and TrKB. Conclusion: Supplementation with EPA appear to have potential effects on improving glial over-activation, n3/n6 imbalance and BDNF down-regulation, which contribute to anti-inflammatory and may provide beneficial effects on inflammation-associated disease such as AD.",
keywords = "Brain-derived neurotrophic factor, Eicosapentaenoic acid, IL-1β, Inflammation, Proinflammatory cytokine",
author = "Yilong Dong and Min Xu and Kalueff, {Allan V.} and Cai Song",
note = "Publisher Copyright: {\textcopyright} 2017, Springer-Verlag Berlin Heidelberg.",
year = "2018",
month = aug,
day = "1",
doi = "10.1007/s00394-017-1462-7",
language = "English",
volume = "57",
pages = "1781--1791",
journal = "European Journal of Nutrition",
issn = "1436-6207",
publisher = "D. Steinkopff-Verlag",
number = "5",

}

RIS

TY - JOUR

T1 - Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration

AU - Dong, Yilong

AU - Xu, Min

AU - Kalueff, Allan V.

AU - Song, Cai

N1 - Publisher Copyright: © 2017, Springer-Verlag Berlin Heidelberg.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Purpose: Interleukin (IL)-1β can activate glial cells to trigger neuroinflammation and neurodegeneration. Lower omega (n)-3 polyunsaturated fatty acids (PUFAs) and lower n-3/n-6 PUFA ratios occur in the brain of patients with Alzheimer’s disease (AD). We have previously reported that an n-3 PUFA, eicosapentaenoic acid (EPA), can improve memory and attenuate neurodegeneration-like changes in animal models of AD. However, whether and how EPA modulates glial cell activity and functions remains unclear. The aim of this study was to test the hypothesis that EPA may attenuate neuroinflammation by inhibiting microglial activation and microglia-produced proinflammatory cytokines, and by enhancing the expression of astrocytes-produced neurotrophins and their receptors. Methods: Male Long-Evans rats were fed either palm oil supplemented diet or EPA supplemented diet for 42 days. On day 36 of diet feeding, rats received an intracerebroventricular injection of IL-1β or saline for 7 days. The glial activation, the expression of amyloid precursor protein (APP), calcium-dependent phospholipase (cPL) A2, brain-derived neurotrophic factor (BDNF) and its receptor, and PUFA profile in the hippocampus were analyzed. Results: IL-1β elevated biomarkers of microglial CD11b and astrocyte GFAP expression, increased the expression of APP, tumor-necrosis factor (TNF)-α, but reduced BDNF and its receptor (TrKB). IL-1β also lowered n-3 EPA and docosapentaenoic acid concentrations but increased n-6 PUFAs and cPLA2 activity in the hippocampus. EPA supplement normalized the n-3 and n-6 PUFA profiles and cPLA2 levels, inhibited glial activation, reduced APP and TNF-α expression, as well as up-regulated BDNF and TrKB. Conclusion: Supplementation with EPA appear to have potential effects on improving glial over-activation, n3/n6 imbalance and BDNF down-regulation, which contribute to anti-inflammatory and may provide beneficial effects on inflammation-associated disease such as AD.

AB - Purpose: Interleukin (IL)-1β can activate glial cells to trigger neuroinflammation and neurodegeneration. Lower omega (n)-3 polyunsaturated fatty acids (PUFAs) and lower n-3/n-6 PUFA ratios occur in the brain of patients with Alzheimer’s disease (AD). We have previously reported that an n-3 PUFA, eicosapentaenoic acid (EPA), can improve memory and attenuate neurodegeneration-like changes in animal models of AD. However, whether and how EPA modulates glial cell activity and functions remains unclear. The aim of this study was to test the hypothesis that EPA may attenuate neuroinflammation by inhibiting microglial activation and microglia-produced proinflammatory cytokines, and by enhancing the expression of astrocytes-produced neurotrophins and their receptors. Methods: Male Long-Evans rats were fed either palm oil supplemented diet or EPA supplemented diet for 42 days. On day 36 of diet feeding, rats received an intracerebroventricular injection of IL-1β or saline for 7 days. The glial activation, the expression of amyloid precursor protein (APP), calcium-dependent phospholipase (cPL) A2, brain-derived neurotrophic factor (BDNF) and its receptor, and PUFA profile in the hippocampus were analyzed. Results: IL-1β elevated biomarkers of microglial CD11b and astrocyte GFAP expression, increased the expression of APP, tumor-necrosis factor (TNF)-α, but reduced BDNF and its receptor (TrKB). IL-1β also lowered n-3 EPA and docosapentaenoic acid concentrations but increased n-6 PUFAs and cPLA2 activity in the hippocampus. EPA supplement normalized the n-3 and n-6 PUFA profiles and cPLA2 levels, inhibited glial activation, reduced APP and TNF-α expression, as well as up-regulated BDNF and TrKB. Conclusion: Supplementation with EPA appear to have potential effects on improving glial over-activation, n3/n6 imbalance and BDNF down-regulation, which contribute to anti-inflammatory and may provide beneficial effects on inflammation-associated disease such as AD.

KW - Brain-derived neurotrophic factor

KW - Eicosapentaenoic acid

KW - IL-1β

KW - Inflammation

KW - Proinflammatory cytokine

UR - http://www.scopus.com/inward/record.url?scp=85019540915&partnerID=8YFLogxK

U2 - 10.1007/s00394-017-1462-7

DO - 10.1007/s00394-017-1462-7

M3 - Article

C2 - 28523372

AN - SCOPUS:85019540915

VL - 57

SP - 1781

EP - 1791

JO - European Journal of Nutrition

JF - European Journal of Nutrition

SN - 1436-6207

IS - 5

ER -

ID: 97809928