Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
Determination of the quark-gluon string parameters from the data on pp, pA and AA collisions at wide energy range using Bayesian Gaussian Process Optimization. / Kovalenko, Vladimir.
в: Proceedings of Science, Том 336, 235, 26.09.2019.Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
}
TY - JOUR
T1 - Determination of the quark-gluon string parameters from the data on pp, pA and AA collisions at wide energy range using Bayesian Gaussian Process Optimization
AU - Kovalenko, Vladimir
PY - 2019/9/26
Y1 - 2019/9/26
N2 - Bayesian Gaussian Process Optimization can be considered as a method for the determination of the model parameters, based on experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions in a wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string (rstr) and the mean multiplicity per rapidity from one string (μ0).
AB - Bayesian Gaussian Process Optimization can be considered as a method for the determination of the model parameters, based on experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions in a wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string (rstr) and the mean multiplicity per rapidity from one string (μ0).
KW - Gaussian noise (electronic)
KW - HADRONS
KW - optimization
KW - Process control
KW - Bayesian Gaussian process
KW - Bayesian optimization
KW - Gaussian process regression
KW - Model parameters
KW - Monte Carlo model
KW - Nuclear interaction
KW - Phenomenological Models
KW - Wide energy range
KW - Gaussian distribution
UR - http://www.scopus.com/inward/record.url?scp=85073684199&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/determination-quarkgluon-string-parameters-data-pp-pa-aa-collisions-wide-energy-range-using-bayesian
U2 - 10.22323/1.336.0235
DO - 10.22323/1.336.0235
M3 - Conference article
AN - SCOPUS:85073684199
VL - 336
JO - Proceedings of Science
JF - Proceedings of Science
SN - 1824-8039
M1 - 235
T2 - 13th Quark Confinement and the Hadron Spectrum, Confinement 2018
Y2 - 31 July 2018 through 6 August 2018
ER -
ID: 48309823