Standard

Determinants in net subgroups. / Borevich, Z. I.; Vavilov, N. A.

в: Journal of Soviet Mathematics, Том 27, № 4, 11.1984, стр. 2855-2865.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Borevich, ZI & Vavilov, NA 1984, 'Determinants in net subgroups', Journal of Soviet Mathematics, Том. 27, № 4, стр. 2855-2865. https://doi.org/10.1007/BF01410739

APA

Borevich, Z. I., & Vavilov, N. A. (1984). Determinants in net subgroups. Journal of Soviet Mathematics, 27(4), 2855-2865. https://doi.org/10.1007/BF01410739

Vancouver

Borevich ZI, Vavilov NA. Determinants in net subgroups. Journal of Soviet Mathematics. 1984 Нояб.;27(4):2855-2865. https://doi.org/10.1007/BF01410739

Author

Borevich, Z. I. ; Vavilov, N. A. / Determinants in net subgroups. в: Journal of Soviet Mathematics. 1984 ; Том 27, № 4. стр. 2855-2865.

BibTeX

@article{f2c4b19f7bcd452fa7ef47ef83031292,
title = "Determinants in net subgroups",
abstract = "Suppose R is a commutative ring with 1, b{cyrillic}=(b{cyrillic}ij) is a fixed D-net of ideals of R of order n, and Gb{cyrillic} is the corresponding net subgroup of the general linear group GL (n, R). There is constructed for b{cyrillic} a homomorphism detb{cyrillic} of the subgroup G(b{cyrillic}) into a certain Abelian group Φ(b{cyrillic}). Let I be the index set {1...,n}. For each subset α{subset double equals}I let b{cyrillic}(∝)=∑b{cyrillic}ijb{cyrillic}ji, where i, ranges over all indices in α and j independently over the indices in the complement Iα (b{cyrillic}(I) is the zero ideal). Let det∝(a) denote the principal minor of order |α|≤n of the matrix a ∃ G (b{cyrillic}) corresponding to the indices in α, and let' Φ(b{cyrillic}) be the Cartesian product of the multiplicative groups of the quotient rings R/b{cyrillic}(α) over all subsets α{subset double equals} I. The homomorphism detb{cyrillic} is defined as follows:[Figure not available: see fulltext.] It is proved that if R is a semilocal commutative Bezout ring, then the kernel Ker detb{cyrillic} coincides with the subgroup E(b{cyrillic}) generated by all transvections in G(b{cyrillic}). For these R is also defined Tm detb{cyrillic}.",
author = "Borevich, {Z. I.} and Vavilov, {N. A.}",
note = "Copyright: Copyright 2007 Elsevier B.V., All rights reserved.",
year = "1984",
month = nov,
doi = "10.1007/BF01410739",
language = "English",
volume = "27",
pages = "2855--2865",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Determinants in net subgroups

AU - Borevich, Z. I.

AU - Vavilov, N. A.

N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.

PY - 1984/11

Y1 - 1984/11

N2 - Suppose R is a commutative ring with 1, b{cyrillic}=(b{cyrillic}ij) is a fixed D-net of ideals of R of order n, and Gb{cyrillic} is the corresponding net subgroup of the general linear group GL (n, R). There is constructed for b{cyrillic} a homomorphism detb{cyrillic} of the subgroup G(b{cyrillic}) into a certain Abelian group Φ(b{cyrillic}). Let I be the index set {1...,n}. For each subset α{subset double equals}I let b{cyrillic}(∝)=∑b{cyrillic}ijb{cyrillic}ji, where i, ranges over all indices in α and j independently over the indices in the complement Iα (b{cyrillic}(I) is the zero ideal). Let det∝(a) denote the principal minor of order |α|≤n of the matrix a ∃ G (b{cyrillic}) corresponding to the indices in α, and let' Φ(b{cyrillic}) be the Cartesian product of the multiplicative groups of the quotient rings R/b{cyrillic}(α) over all subsets α{subset double equals} I. The homomorphism detb{cyrillic} is defined as follows:[Figure not available: see fulltext.] It is proved that if R is a semilocal commutative Bezout ring, then the kernel Ker detb{cyrillic} coincides with the subgroup E(b{cyrillic}) generated by all transvections in G(b{cyrillic}). For these R is also defined Tm detb{cyrillic}.

AB - Suppose R is a commutative ring with 1, b{cyrillic}=(b{cyrillic}ij) is a fixed D-net of ideals of R of order n, and Gb{cyrillic} is the corresponding net subgroup of the general linear group GL (n, R). There is constructed for b{cyrillic} a homomorphism detb{cyrillic} of the subgroup G(b{cyrillic}) into a certain Abelian group Φ(b{cyrillic}). Let I be the index set {1...,n}. For each subset α{subset double equals}I let b{cyrillic}(∝)=∑b{cyrillic}ijb{cyrillic}ji, where i, ranges over all indices in α and j independently over the indices in the complement Iα (b{cyrillic}(I) is the zero ideal). Let det∝(a) denote the principal minor of order |α|≤n of the matrix a ∃ G (b{cyrillic}) corresponding to the indices in α, and let' Φ(b{cyrillic}) be the Cartesian product of the multiplicative groups of the quotient rings R/b{cyrillic}(α) over all subsets α{subset double equals} I. The homomorphism detb{cyrillic} is defined as follows:[Figure not available: see fulltext.] It is proved that if R is a semilocal commutative Bezout ring, then the kernel Ker detb{cyrillic} coincides with the subgroup E(b{cyrillic}) generated by all transvections in G(b{cyrillic}). For these R is also defined Tm detb{cyrillic}.

UR - http://www.scopus.com/inward/record.url?scp=34250140374&partnerID=8YFLogxK

U2 - 10.1007/BF01410739

DO - 10.1007/BF01410739

M3 - Article

AN - SCOPUS:34250140374

VL - 27

SP - 2855

EP - 2865

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 76484491