Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Detection of Neurons on Images of the Histological Slices Using Convolutional Neural Network. / Fomin, Ivan; Mikhailov, Viktor; Bakhshiev, Aleksandr; Merkulyeva, Natalia; Veshchitskii, Aleksandr; Musienko, Pavel.
в: Studies in Computational Intelligence, Том 736, 01.01.2018, стр. 85-90.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Detection of Neurons on Images of the Histological Slices Using Convolutional Neural Network
AU - Fomin, Ivan
AU - Mikhailov, Viktor
AU - Bakhshiev, Aleksandr
AU - Merkulyeva, Natalia
AU - Veshchitskii, Aleksandr
AU - Musienko, Pavel
PY - 2018/1/1
Y1 - 2018/1/1
N2 - An automatic analysis of images of the histological slices is one of main steps in process of description of structure of neural network in norm and pathology. Understanding of structure and functions of that networks may help to improve neuro-rehabilitation technologies and to translate experimental data to the clinical practice. Main problem of the automatic analysis is complexity of research object and high variance of its parameters, such as thickness and transparency of slice, intensity and type of histological marker, etc. Variance of parameters make every step of neuron detection very hard and complex task. We represent algorithm of neuron detection on images of spinal cord slices using deep neural network. Networks with different parameters are compared to previous algorithm that based on pixels’ filtration by color.
AB - An automatic analysis of images of the histological slices is one of main steps in process of description of structure of neural network in norm and pathology. Understanding of structure and functions of that networks may help to improve neuro-rehabilitation technologies and to translate experimental data to the clinical practice. Main problem of the automatic analysis is complexity of research object and high variance of its parameters, such as thickness and transparency of slice, intensity and type of histological marker, etc. Variance of parameters make every step of neuron detection very hard and complex task. We represent algorithm of neuron detection on images of spinal cord slices using deep neural network. Networks with different parameters are compared to previous algorithm that based on pixels’ filtration by color.
KW - Deep learning
KW - Image segmentation
KW - NeuN
KW - Neural networks
KW - Neuron detection
KW - Object detection
KW - Spinal cord slices
UR - http://www.scopus.com/inward/record.url?scp=85029211162&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-66604-4_13
DO - 10.1007/978-3-319-66604-4_13
M3 - Article
AN - SCOPUS:85029211162
VL - 736
SP - 85
EP - 90
JO - Studies in Computational Intelligence
JF - Studies in Computational Intelligence
SN - 1860-949X
ER -
ID: 28377490