Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper we study a system of delay differential equations from the viewpoint of a finite time blow-up of the solution. We prove that the system admits blow-up solutions, no matter how small the length of the delay is. In the non-delay system every solution approaches to a stable unit circle in the plane, thus time delay induces blow-up of solutions, which we call “delay-induced blow-up” phenomenon. Furthermore, it is shown that the system has a family of infinitely many periodic solutions, while the non-delay system has only one stable limit cycle. The system studied in this paper is an example that arbitrary small delay can be responsible for a drastic change of the dynamics. We show numerical examples to illustrate our theoretical results.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 1037-1061 |
| Число страниц | 25 |
| Журнал | Japan Journal of Industrial and Applied Mathematics |
| Том | 38 |
| Номер выпуска | 3 |
| DOI | |
| Состояние | Опубликовано - сен 2021 |
ID: 85825542