Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
DEGENERATION OF THE HILBERT PAIRING IN FORMAL GROUPS OVER LOCAL FIELDS. / Vostokov, S. V. ; Vostokova, R. P. ; Podkopaeva, O. Yu. .
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА, МЕХАНИКА, АСТРОНОМИЯ, Том 3(61), № 1, 2016, стр. 59-66.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - DEGENERATION OF THE HILBERT PAIRING IN FORMAL GROUPS OVER LOCAL FIELDS
AU - Vostokov, S. V.
AU - Vostokova, R. P.
AU - Podkopaeva, O. Yu.
PY - 2016
Y1 - 2016
N2 - For an arbitrary local field K (a finite extension of the field Qp) and an arbitrary formal group law F over K, we consider an analog cF of the classical Hilbert pairing. A theorem by S. V. Vostokov and I. B. Fesenko says that if the pairing cF has a certain fundamental symbol property for all Lubin—Tate formal groups, then cF = 0. We generalize the theorem of Vostokov—Fesenko to a wider class of formal groups. Our first result concerns formal groups that are defined over the ring OK of integers of K and have a fixed ring O0 of endomorphisms, where O0 is a subring of OK. We prove that if the symbol cF has the above-mentioned symbol property, then cF = 0. Our second result strengthens the first one in the case of Honda formal groups. The paper consists of three sections. After a short introduction in Sec. 1, we recall basic definitions and facts concerning formal group laws in Sec. 2. In Sec. 3, we state and prove two main results of the paper (Theorems 1 and 2). Refs 8
AB - For an arbitrary local field K (a finite extension of the field Qp) and an arbitrary formal group law F over K, we consider an analog cF of the classical Hilbert pairing. A theorem by S. V. Vostokov and I. B. Fesenko says that if the pairing cF has a certain fundamental symbol property for all Lubin—Tate formal groups, then cF = 0. We generalize the theorem of Vostokov—Fesenko to a wider class of formal groups. Our first result concerns formal groups that are defined over the ring OK of integers of K and have a fixed ring O0 of endomorphisms, where O0 is a subring of OK. We prove that if the symbol cF has the above-mentioned symbol property, then cF = 0. Our second result strengthens the first one in the case of Honda formal groups. The paper consists of three sections. After a short introduction in Sec. 1, we recall basic definitions and facts concerning formal group laws in Sec. 2. In Sec. 3, we state and prove two main results of the paper (Theorems 1 and 2). Refs 8
KW - Hilbert pairing
KW - formal groups
KW - local fields
KW - Steinberg relation
KW - формальная группа
KW - формальный модуль
KW - изогения
KW - спаривание гильберта
UR - http://vestnik.spbu.ru/html16/s01/s01v1/07.pdf
M3 - Article
VL - 3(61)
SP - 59
EP - 66
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 1
ER -
ID: 5787323