DOI

We develop a theory of (first-order) definability in the subword partial order in parallel with similar theories for the h-quasiorder of finite k-labeled forests and for the infix order. In particular, any element is definable (provided that words of length 1 or 2 are taken as parameters), the first-order theory of the structure is atomic and computably isomorphic to the first-order arithmetic. We also characterize the automorphism group of the structure and show that any arithmetical predicate invariant under the automorphisms of the structure is definable in the structure. © 2010 Springer-Verlag Berlin Heidelberg.
Язык оригиналаанглийский
Название основной публикацииPrograms, Proofs, Processes (CiE 2010)
Страницы246-255
Число страниц10
DOI
СостояниеОпубликовано - 29 июл 2010
Событие6th Conference on Computability in Europe, CiE 2010 - Ponta Delgada, Azores, Португалия
Продолжительность: 30 июн 20104 июл 2010

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ИздательSpringer Nature
Том6158
ISSN (печатное издание)0302-9743

конференция

конференция6th Conference on Computability in Europe, CiE 2010
Страна/TерриторияПортугалия
ГородPonta Delgada, Azores
Период30/06/104/07/10

ID: 127086235