DOI

We develop a theory of (first-order) definability in the subword partial order in parallel with similar theories for the h-quasiorder of finite k-labeled forests and for the infix order. In particular, any element is definable (provided that the words of length 1 or 2 are taken as parameters), the first-order theory of the structure is atomic and computably isomorphic to the first-order arithmetic. We also characterize the automorphism group of the structure and show that every predicate invariant under the automorphisms of the structure is definable in the structure. © 2010 Pleiades Publishing, Ltd.
Язык оригиналаанглийский
Страницы (с-по)456-462
Число страниц7
ЖурналSiberian Mathematical Journal
Том51
Номер выпуска3
DOI
СостояниеОпубликовано - 1 июл 2010

ID: 127086587