DOI

We prove that for any k ≥ 3 each element of the homomorphic quasiorder of finite k-labeled forests is definable, provided that the minimal non-smallest elements are allowed as parameters. As corollaries, we show that the structure is atomic and characterize the automorphism group of the structure. Similar results hold true for two other relevant structures: the homomorphic quasiorder of finite k-labeled trees, and of finite k-labeled trees with a fixed label of the root element. © Springer-Verlag Berlin Heidelberg 2007.
Язык оригиналаанглийский
Название основной публикации3rd Conference on Computability in Europe, CiE 2007
Страницы436-445
Число страниц10
DOI
СостояниеОпубликовано - 1 дек 2007
Событиеcomputability in europe-2007 -
Продолжительность: 18 июн 2007 → …

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ИздательSpringer Nature
Том4497
ISSN (печатное издание)0302-9743

конференция

конференцияcomputability in europe-2007
Период18/06/07 → …

ID: 127088113